Abstract

A method for producing diffractive optical elements (DOE’s) for multiple wavelengths without chromatic aberration is described. These DOE’s can be designed for any distinct wavelength. The DOE’s are produced from two different optical materials, taking advantage of their different refractive indices and dispersions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Arieli, Y. Z. Lauber, N. P. Eisenberg, “Kinoforms for wideband use,” in 9th Meeting on Optical Engineering in Israel, I. Shaldov, ed., Proc. SPIE2426, 443–445 (1994).
    [CrossRef]
  2. S. Noach, A. Lewis, Y. Arieli, N. Eisenberg, “Integrated diffractive and refractive elements for spectrum shaping,” Appl. Opt. 35, 3635–3539 (1996).
    [CrossRef] [PubMed]
  3. J. E. Ford, F. Xu, Y. Fainman, “Wavelength-selective planar holograms,” Opt. Lett. 21, 80–82 (1996).
    [CrossRef] [PubMed]
  4. F. Xu, J. E. Ford, Y. Fainman, “Polarization selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
    [CrossRef] [PubMed]
  5. N. Nieuborg, A. Kirk, B. Morlion, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive optical element with an index-matching gap material,” Appl. Opt. 36, 4681–4685 (1997).
    [CrossRef] [PubMed]
  6. S. M. Ebstein, “Achromatic diffractive optical elements,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 211–216 (1995).
    [CrossRef]
  7. Schott optical glass (Schott Optical Glass, P.O. Box 2480, D-Mainz, Germany, 1980).
  8. W. S. Rodney, H. Haltison, T. A. King, “Refractive index of arsenic trisulfide,” Opt. Soc. Am. 48, 633–636 (1958).
    [CrossRef]

1997 (1)

1996 (2)

1995 (1)

1958 (1)

W. S. Rodney, H. Haltison, T. A. King, “Refractive index of arsenic trisulfide,” Opt. Soc. Am. 48, 633–636 (1958).
[CrossRef]

Arieli, Y.

S. Noach, A. Lewis, Y. Arieli, N. Eisenberg, “Integrated diffractive and refractive elements for spectrum shaping,” Appl. Opt. 35, 3635–3539 (1996).
[CrossRef] [PubMed]

Y. Arieli, Y. Z. Lauber, N. P. Eisenberg, “Kinoforms for wideband use,” in 9th Meeting on Optical Engineering in Israel, I. Shaldov, ed., Proc. SPIE2426, 443–445 (1994).
[CrossRef]

Ebstein, S. M.

S. M. Ebstein, “Achromatic diffractive optical elements,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 211–216 (1995).
[CrossRef]

Eisenberg, N.

Eisenberg, N. P.

Y. Arieli, Y. Z. Lauber, N. P. Eisenberg, “Kinoforms for wideband use,” in 9th Meeting on Optical Engineering in Israel, I. Shaldov, ed., Proc. SPIE2426, 443–445 (1994).
[CrossRef]

Fainman, Y.

Ford, J. E.

Haltison, H.

W. S. Rodney, H. Haltison, T. A. King, “Refractive index of arsenic trisulfide,” Opt. Soc. Am. 48, 633–636 (1958).
[CrossRef]

King, T. A.

W. S. Rodney, H. Haltison, T. A. King, “Refractive index of arsenic trisulfide,” Opt. Soc. Am. 48, 633–636 (1958).
[CrossRef]

Kirk, A.

Lauber, Y. Z.

Y. Arieli, Y. Z. Lauber, N. P. Eisenberg, “Kinoforms for wideband use,” in 9th Meeting on Optical Engineering in Israel, I. Shaldov, ed., Proc. SPIE2426, 443–445 (1994).
[CrossRef]

Lewis, A.

Morlion, B.

Nieuborg, N.

Noach, S.

Rodney, W. S.

W. S. Rodney, H. Haltison, T. A. King, “Refractive index of arsenic trisulfide,” Opt. Soc. Am. 48, 633–636 (1958).
[CrossRef]

Thienpont, H.

Veretennicoff, I.

Xu, F.

Appl. Opt. (3)

Opt. Lett. (1)

Opt. Soc. Am. (1)

W. S. Rodney, H. Haltison, T. A. King, “Refractive index of arsenic trisulfide,” Opt. Soc. Am. 48, 633–636 (1958).
[CrossRef]

Other (3)

Y. Arieli, Y. Z. Lauber, N. P. Eisenberg, “Kinoforms for wideband use,” in 9th Meeting on Optical Engineering in Israel, I. Shaldov, ed., Proc. SPIE2426, 443–445 (1994).
[CrossRef]

S. M. Ebstein, “Achromatic diffractive optical elements,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 211–216 (1995).
[CrossRef]

Schott optical glass (Schott Optical Glass, P.O. Box 2480, D-Mainz, Germany, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

One pixel of the combined DOE.

Fig. 2
Fig. 2

One pixel of the combined DOE etched from two sides.

Fig. 3
Fig. 3

Wavelength response of the combined DOE.

Tables (2)

Tables Icon

Table 1 Refractive Indices of the DOE Materials for Two Wavelengths

Tables Icon

Table 2 Required Etch Depths of the Combined DOE for Different Phase Combinations of the Two Wavelengths before and after Optimization

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n 1 λ - n g λ d 1 + n 2 λ - n g λ d 2 = 1 2 π   λ ϕ ,
n - n g d = 1 2 π   λ ϕ ,
n = n 1 λ 1 n 2 λ 1 n 1 λ 2 n 2 λ 2 , n g = n g λ 1 n g λ 1 n g λ 2 n g λ 2 , d = d 1 d 2 , λ ϕ = λ 1 ϕ 1 + m 1 2 π λ 2 ϕ 2 + m 2 2 π
d = 1 2 π n - n g - 1 λ ϕ .
d 1 = n 2 λ 2 - n g λ 2 λ 1 ( ϕ 1 + m 1 2 π ) 2 π - n 2 λ 1 - n g λ 1 λ 2 ( ϕ 2 + m 2 2 π ) 2 π n 1 λ 1 - n g λ 1 n 2 λ 2 - n g λ 2 - n 1 λ 2 - n g λ 2 n 2 λ 1 - n g λ 1 , d 2 = - n 1 λ 2 - n g λ 2 λ 1 ( ϕ 1 + m 1 2 π ) 2 π - n 1 λ 1 - n g λ 1 λ 2 ( ϕ 2 + m 2 2 π ) 2 π n 1 λ 1 - n g λ 1 n 2 λ 2 - n g λ 2 - n 1 λ 2 - n g λ 2 n 2 λ 1 - n g λ 1 .
n 1 λ - n 2 λ d 1 + n g λ - n 2 λ d 2 + n g λ - n 3 λ d 3 + n 4 λ - n 3 λ d 4 = 1 2 π   λ ϕ ,
Δ ϕ = 2 π λ n 1 λ - n g λ Δ d 1 + n 2 λ - n g λ Δ d 2 ,

Metrics