Abstract

The program couple combines simulators for optical performance, mechanical reliability, and production cost under a graphical–user interface to design, simulate, and evaluate micro-optomechanical structures. The thermal simulator predicts the package temperature distribution on the basis of the materials and the geometry as well as on heat sources, sinks, and boundary conditions. The thermal distribution is input to the mechanical simulator, which calculates the stresses or strains and displacements caused by differential thermal expansion. The optical simulator predicts the impact on the optical efficiency and the cross talk of mechanical and optical parameter variations such as solder heights, misalignments, and wavelength distributions. The cost simulator represents the manufacturing process flow and calculates the final cost and the cost sensitivity on basis of the cost and the yield of each process step. By means of balancing detector and coupling yield, cosimulation from optical to cost domains determines the optimum detector size to produce the lowest-cost transceiver module.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Peterson, J. N. Sweet, S. N. Burchett, A. Hsia, “Stress from flip-chip assembly and underfill; measurements with the ATC4.1 assembly test chip and analysis by finite element method,” in Proceedings of the IEEE 47 Electronic Components and Technology Conference, J. M. Segelken, C. S. D’Egidio, eds. (IEEE, New York, 1997), pp. 134–143.
  2. Y. C. Lee, S. E. Swirhun, W. S. Fu, T. A. Keyser, J. L. Jewell, W. E. Quinn, “Thermal management of VCSEL-based optoelectronic modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part B 20, 540–547 (1996).
  3. J. A. Sultana, D. R. O’Brien, S. E. Forman, “Finite-element analysis of adhesive butt joints in fiber-optic devices,” in Adhesive Engineering, E. A. Norland, K. M. Liechti, eds., Proc. SPIE1999, 48–58 (1993).
    [CrossRef]
  4. G. D. Khoe, H. Kock, D. Kuppers, J. H. F. M. Poulissen, H. M. De Vrieze, “Progress in monomode optical-fiber interconnection devices,” J. Lightwave Technol. 2, 217–227 (1984).
    [CrossRef]
  5. S. Masuda, T. Iwama, “Low-loss lens connector for single-mode fibers,” Appl. Opt. 21, 3475–3483 (1982).
    [CrossRef] [PubMed]
  6. J. Sakai, T. Kimura, “Design of miniature lens for semiconductor laser to single-mode fiber coupling,” J. Quantum Electron. QE-16, 1059–1066 (1980).
    [CrossRef]
  7. R. E. Wagner, W. J. Tomlinson, “Coupling efficiency of optics in single mode fiber components,” Appl. Opt. 21, 2671–2688 (1982).
    [CrossRef] [PubMed]
  8. H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
    [CrossRef]
  9. A. Sommerfeld, Optics: Lectures on Theoretical Physics (Academic, New York, 1964), p. 197.
  10. P. A. Sandborn, M. S. Abadir, C. F. Murphy, “The tradeoff between peripheral and area array bonding of components in multichip modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 17, 249–256 (1994).
    [CrossRef]
  11. Y. C. Lee, H. T. Ghaffari, J. M. Segelken, “Internal thermal resistance of a multi-chip packaging design for VLSI based systems,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 12, 163–169 (1989).
    [CrossRef]
  12. E. Suhir, “Mechanical approach to the evaluation of the low temperature threshold of added transmission losses in single-coated optical fibers,” J. Lightwave Technol. 8, 863–867 (1990).
    [CrossRef]
  13. J. E. Shigley, C. R. Mischke, Mechanical Engineering Design, 5th ed. (McGraw-Hill, New York, 1989), Chap. 6, pp. 243–246.
  14. D. A. Doane, R. D. Franzon, eds., Multichip Module Technologies and Alternatives—The Basics (Van Nostrand Reinhold, New York, 1993).
    [CrossRef]
  15. C. W. Stirk, J. Neff, “The cost of optical interconnects vs MCMs,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 21–23.
    [CrossRef]
  16. J. A. Cunningham, “The use and evaluation of yield models in integrated circuit manufacturing,” IEEE Trans. Semicond. Manuf. 3, 60–71 (1990).
    [CrossRef]

1996 (1)

Y. C. Lee, S. E. Swirhun, W. S. Fu, T. A. Keyser, J. L. Jewell, W. E. Quinn, “Thermal management of VCSEL-based optoelectronic modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part B 20, 540–547 (1996).

1994 (1)

P. A. Sandborn, M. S. Abadir, C. F. Murphy, “The tradeoff between peripheral and area array bonding of components in multichip modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 17, 249–256 (1994).
[CrossRef]

1990 (2)

E. Suhir, “Mechanical approach to the evaluation of the low temperature threshold of added transmission losses in single-coated optical fibers,” J. Lightwave Technol. 8, 863–867 (1990).
[CrossRef]

J. A. Cunningham, “The use and evaluation of yield models in integrated circuit manufacturing,” IEEE Trans. Semicond. Manuf. 3, 60–71 (1990).
[CrossRef]

1989 (1)

Y. C. Lee, H. T. Ghaffari, J. M. Segelken, “Internal thermal resistance of a multi-chip packaging design for VLSI based systems,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 12, 163–169 (1989).
[CrossRef]

1984 (1)

G. D. Khoe, H. Kock, D. Kuppers, J. H. F. M. Poulissen, H. M. De Vrieze, “Progress in monomode optical-fiber interconnection devices,” J. Lightwave Technol. 2, 217–227 (1984).
[CrossRef]

1982 (2)

1980 (1)

J. Sakai, T. Kimura, “Design of miniature lens for semiconductor laser to single-mode fiber coupling,” J. Quantum Electron. QE-16, 1059–1066 (1980).
[CrossRef]

1966 (1)

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Abadir, M. S.

P. A. Sandborn, M. S. Abadir, C. F. Murphy, “The tradeoff between peripheral and area array bonding of components in multichip modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 17, 249–256 (1994).
[CrossRef]

Burchett, S. N.

D. W. Peterson, J. N. Sweet, S. N. Burchett, A. Hsia, “Stress from flip-chip assembly and underfill; measurements with the ATC4.1 assembly test chip and analysis by finite element method,” in Proceedings of the IEEE 47 Electronic Components and Technology Conference, J. M. Segelken, C. S. D’Egidio, eds. (IEEE, New York, 1997), pp. 134–143.

Cunningham, J. A.

J. A. Cunningham, “The use and evaluation of yield models in integrated circuit manufacturing,” IEEE Trans. Semicond. Manuf. 3, 60–71 (1990).
[CrossRef]

De Vrieze, H. M.

G. D. Khoe, H. Kock, D. Kuppers, J. H. F. M. Poulissen, H. M. De Vrieze, “Progress in monomode optical-fiber interconnection devices,” J. Lightwave Technol. 2, 217–227 (1984).
[CrossRef]

Forman, S. E.

J. A. Sultana, D. R. O’Brien, S. E. Forman, “Finite-element analysis of adhesive butt joints in fiber-optic devices,” in Adhesive Engineering, E. A. Norland, K. M. Liechti, eds., Proc. SPIE1999, 48–58 (1993).
[CrossRef]

Fu, W. S.

Y. C. Lee, S. E. Swirhun, W. S. Fu, T. A. Keyser, J. L. Jewell, W. E. Quinn, “Thermal management of VCSEL-based optoelectronic modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part B 20, 540–547 (1996).

Ghaffari, H. T.

Y. C. Lee, H. T. Ghaffari, J. M. Segelken, “Internal thermal resistance of a multi-chip packaging design for VLSI based systems,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 12, 163–169 (1989).
[CrossRef]

Hsia, A.

D. W. Peterson, J. N. Sweet, S. N. Burchett, A. Hsia, “Stress from flip-chip assembly and underfill; measurements with the ATC4.1 assembly test chip and analysis by finite element method,” in Proceedings of the IEEE 47 Electronic Components and Technology Conference, J. M. Segelken, C. S. D’Egidio, eds. (IEEE, New York, 1997), pp. 134–143.

Iwama, T.

Jewell, J. L.

Y. C. Lee, S. E. Swirhun, W. S. Fu, T. A. Keyser, J. L. Jewell, W. E. Quinn, “Thermal management of VCSEL-based optoelectronic modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part B 20, 540–547 (1996).

Keyser, T. A.

Y. C. Lee, S. E. Swirhun, W. S. Fu, T. A. Keyser, J. L. Jewell, W. E. Quinn, “Thermal management of VCSEL-based optoelectronic modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part B 20, 540–547 (1996).

Khoe, G. D.

G. D. Khoe, H. Kock, D. Kuppers, J. H. F. M. Poulissen, H. M. De Vrieze, “Progress in monomode optical-fiber interconnection devices,” J. Lightwave Technol. 2, 217–227 (1984).
[CrossRef]

Kimura, T.

J. Sakai, T. Kimura, “Design of miniature lens for semiconductor laser to single-mode fiber coupling,” J. Quantum Electron. QE-16, 1059–1066 (1980).
[CrossRef]

Kock, H.

G. D. Khoe, H. Kock, D. Kuppers, J. H. F. M. Poulissen, H. M. De Vrieze, “Progress in monomode optical-fiber interconnection devices,” J. Lightwave Technol. 2, 217–227 (1984).
[CrossRef]

Kogelnik, H.

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Kuppers, D.

G. D. Khoe, H. Kock, D. Kuppers, J. H. F. M. Poulissen, H. M. De Vrieze, “Progress in monomode optical-fiber interconnection devices,” J. Lightwave Technol. 2, 217–227 (1984).
[CrossRef]

Lee, Y. C.

Y. C. Lee, S. E. Swirhun, W. S. Fu, T. A. Keyser, J. L. Jewell, W. E. Quinn, “Thermal management of VCSEL-based optoelectronic modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part B 20, 540–547 (1996).

Y. C. Lee, H. T. Ghaffari, J. M. Segelken, “Internal thermal resistance of a multi-chip packaging design for VLSI based systems,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 12, 163–169 (1989).
[CrossRef]

Li, T.

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Masuda, S.

Mischke, C. R.

J. E. Shigley, C. R. Mischke, Mechanical Engineering Design, 5th ed. (McGraw-Hill, New York, 1989), Chap. 6, pp. 243–246.

Murphy, C. F.

P. A. Sandborn, M. S. Abadir, C. F. Murphy, “The tradeoff between peripheral and area array bonding of components in multichip modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 17, 249–256 (1994).
[CrossRef]

Neff, J.

C. W. Stirk, J. Neff, “The cost of optical interconnects vs MCMs,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 21–23.
[CrossRef]

O’Brien, D. R.

J. A. Sultana, D. R. O’Brien, S. E. Forman, “Finite-element analysis of adhesive butt joints in fiber-optic devices,” in Adhesive Engineering, E. A. Norland, K. M. Liechti, eds., Proc. SPIE1999, 48–58 (1993).
[CrossRef]

Peterson, D. W.

D. W. Peterson, J. N. Sweet, S. N. Burchett, A. Hsia, “Stress from flip-chip assembly and underfill; measurements with the ATC4.1 assembly test chip and analysis by finite element method,” in Proceedings of the IEEE 47 Electronic Components and Technology Conference, J. M. Segelken, C. S. D’Egidio, eds. (IEEE, New York, 1997), pp. 134–143.

Poulissen, J. H. F. M.

G. D. Khoe, H. Kock, D. Kuppers, J. H. F. M. Poulissen, H. M. De Vrieze, “Progress in monomode optical-fiber interconnection devices,” J. Lightwave Technol. 2, 217–227 (1984).
[CrossRef]

Quinn, W. E.

Y. C. Lee, S. E. Swirhun, W. S. Fu, T. A. Keyser, J. L. Jewell, W. E. Quinn, “Thermal management of VCSEL-based optoelectronic modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part B 20, 540–547 (1996).

Sakai, J.

J. Sakai, T. Kimura, “Design of miniature lens for semiconductor laser to single-mode fiber coupling,” J. Quantum Electron. QE-16, 1059–1066 (1980).
[CrossRef]

Sandborn, P. A.

P. A. Sandborn, M. S. Abadir, C. F. Murphy, “The tradeoff between peripheral and area array bonding of components in multichip modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 17, 249–256 (1994).
[CrossRef]

Segelken, J. M.

Y. C. Lee, H. T. Ghaffari, J. M. Segelken, “Internal thermal resistance of a multi-chip packaging design for VLSI based systems,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 12, 163–169 (1989).
[CrossRef]

Shigley, J. E.

J. E. Shigley, C. R. Mischke, Mechanical Engineering Design, 5th ed. (McGraw-Hill, New York, 1989), Chap. 6, pp. 243–246.

Sommerfeld, A.

A. Sommerfeld, Optics: Lectures on Theoretical Physics (Academic, New York, 1964), p. 197.

Stirk, C. W.

C. W. Stirk, J. Neff, “The cost of optical interconnects vs MCMs,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 21–23.
[CrossRef]

Suhir, E.

E. Suhir, “Mechanical approach to the evaluation of the low temperature threshold of added transmission losses in single-coated optical fibers,” J. Lightwave Technol. 8, 863–867 (1990).
[CrossRef]

Sultana, J. A.

J. A. Sultana, D. R. O’Brien, S. E. Forman, “Finite-element analysis of adhesive butt joints in fiber-optic devices,” in Adhesive Engineering, E. A. Norland, K. M. Liechti, eds., Proc. SPIE1999, 48–58 (1993).
[CrossRef]

Sweet, J. N.

D. W. Peterson, J. N. Sweet, S. N. Burchett, A. Hsia, “Stress from flip-chip assembly and underfill; measurements with the ATC4.1 assembly test chip and analysis by finite element method,” in Proceedings of the IEEE 47 Electronic Components and Technology Conference, J. M. Segelken, C. S. D’Egidio, eds. (IEEE, New York, 1997), pp. 134–143.

Swirhun, S. E.

Y. C. Lee, S. E. Swirhun, W. S. Fu, T. A. Keyser, J. L. Jewell, W. E. Quinn, “Thermal management of VCSEL-based optoelectronic modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part B 20, 540–547 (1996).

Tomlinson, W. J.

Wagner, R. E.

Appl. Opt. (2)

IEEE Trans. Compon. Hybrids Manuf. Technol. Part A (2)

P. A. Sandborn, M. S. Abadir, C. F. Murphy, “The tradeoff between peripheral and area array bonding of components in multichip modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 17, 249–256 (1994).
[CrossRef]

Y. C. Lee, H. T. Ghaffari, J. M. Segelken, “Internal thermal resistance of a multi-chip packaging design for VLSI based systems,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part A 12, 163–169 (1989).
[CrossRef]

IEEE Trans. Compon. Hybrids Manuf. Technol. Part B (1)

Y. C. Lee, S. E. Swirhun, W. S. Fu, T. A. Keyser, J. L. Jewell, W. E. Quinn, “Thermal management of VCSEL-based optoelectronic modules,” IEEE Trans. Compon. Hybrids Manuf. Technol. Part B 20, 540–547 (1996).

IEEE Trans. Semicond. Manuf. (1)

J. A. Cunningham, “The use and evaluation of yield models in integrated circuit manufacturing,” IEEE Trans. Semicond. Manuf. 3, 60–71 (1990).
[CrossRef]

J. Lightwave Technol. (2)

E. Suhir, “Mechanical approach to the evaluation of the low temperature threshold of added transmission losses in single-coated optical fibers,” J. Lightwave Technol. 8, 863–867 (1990).
[CrossRef]

G. D. Khoe, H. Kock, D. Kuppers, J. H. F. M. Poulissen, H. M. De Vrieze, “Progress in monomode optical-fiber interconnection devices,” J. Lightwave Technol. 2, 217–227 (1984).
[CrossRef]

J. Quantum Electron. (1)

J. Sakai, T. Kimura, “Design of miniature lens for semiconductor laser to single-mode fiber coupling,” J. Quantum Electron. QE-16, 1059–1066 (1980).
[CrossRef]

Proc. IEEE (1)

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Other (6)

A. Sommerfeld, Optics: Lectures on Theoretical Physics (Academic, New York, 1964), p. 197.

D. W. Peterson, J. N. Sweet, S. N. Burchett, A. Hsia, “Stress from flip-chip assembly and underfill; measurements with the ATC4.1 assembly test chip and analysis by finite element method,” in Proceedings of the IEEE 47 Electronic Components and Technology Conference, J. M. Segelken, C. S. D’Egidio, eds. (IEEE, New York, 1997), pp. 134–143.

J. A. Sultana, D. R. O’Brien, S. E. Forman, “Finite-element analysis of adhesive butt joints in fiber-optic devices,” in Adhesive Engineering, E. A. Norland, K. M. Liechti, eds., Proc. SPIE1999, 48–58 (1993).
[CrossRef]

J. E. Shigley, C. R. Mischke, Mechanical Engineering Design, 5th ed. (McGraw-Hill, New York, 1989), Chap. 6, pp. 243–246.

D. A. Doane, R. D. Franzon, eds., Multichip Module Technologies and Alternatives—The Basics (Van Nostrand Reinhold, New York, 1993).
[CrossRef]

C. W. Stirk, J. Neff, “The cost of optical interconnects vs MCMs,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 21–23.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Three-dimensional configuration of a typical thermal model. IC, integrated circuit.

Fig. 2
Fig. 2

New configuration with the driver IC on ceramic.

Fig. 3
Fig. 3

Vertical distributions of junction-to-case temperature differences passing through the driver IC.

Fig. 4
Fig. 4

Finite-element model for laser-to-fiber coupling.

Fig. 5
Fig. 5

Distribution of the transceiver module’s optical efficiency when all parameters that influence efficiency are varied over their tolerance ranges.

Fig. 6
Fig. 6

Yield distribution corresponding to the efficiency distribution in Fig. 5.

Fig. 7
Fig. 7

Sensitivity of the transceiver module’s optical efficiency when only one parameter, offset of the laser source, is varied.

Fig. 8
Fig. 8

Variation in the coupling efficiency for a lateral positioning error of a tilted holographic optical element.

Fig. 9
Fig. 9

Process flow containing the major process steps, including purchasing materials, assembly, and testing. These objects are modified from fundamental icons that are shown in the Basic Object Library in the top right-hand corner, Standard Machines Library in the middle, or a user workspace on the left.

Fig. 10
Fig. 10

Cost-computation output display. Each unit cost is weighted by the yield between it and the output to determine its fractional contribution to the total cost. The sensitivity analysis shows the final cost-value sensitivity in terms of the cost and the yield of each step. Parameters with large positive or large negative sensitivity values are bottlenecks to reducing cost.

Fig. 11
Fig. 11

Optical simulation driving-cost model for determining the optimum detector size.

Fig. 12
Fig. 12

Plot of the cost as a function of the detector area at 35.0% minimum efficiency shows that the optimum detector size is 20,000 μm2. From the minimum, the plot rises to the right because of decreased detector yield from point defects. The plot rises to the left because of decreased coupling-efficiency yield. The roughness of the plot is due to the variance of the Monte Carlo optical efficiency calculation.

Tables (3)

Tables Icon

Table 1 Major Elements for a Typical Thermal Model

Tables Icon

Table 2 Material Properties for the Mechanical Model

Tables Icon

Table 3 Misalignment and Coupling Efficiency with Respect to Different Adhesive Materials

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Yield = exp - dA .

Metrics