Abstract

Page-oriented optical memories combine high capacity with massive data-transfer rates and could provide the next generation of secondary storage systems. Several technological barriers need to be overcome before these memories become commercial products. One is the need for efficient interfaces to electronic computers. To assist in the analysis of all issues pertaining to such an interface, we have developed the optical storage interactive simulator (oasis), an interactive software tool. oasis can simulate data-encoding schemes, noise sources present in a particular memory system, and data-recovery mechanisms. Bit-error rates and other useful statistics can also be measured. The user has the option of studying the effects of individual error sources to the system output or of applying several of them in any order dictated by the system architecture. This multifaceted analysis will assist the user in evaluating the effectiveness of a particular error-correcting code and choosing the right one for the system.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  2. M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittman, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360–2374 (1996).
    [CrossRef] [PubMed]
  3. P. A. Mitkas, ed., Proceedings of the Workshop on Data Encoding for Page-Oriented Optical memories (DEPOM’96) (Colorado State University College of Engineering, Ft. Collins, Colo., 1997).
  4. L. J. Irakliotis, C. W. Wilmsen, P. A. Mitkas, “The optical memory/electronic computer interface as a parallel processing architecture,” J. Parallel Distrib. Comput. 41, 67–77 (1997).
    [CrossRef]
  5. Khoral Research, Inc., khoros 2.1 Developer’s Manual (Khoral Research, Inc., Albuquerque, New Mexico, 1996).
  6. perl (practical extraction and report language) is a programming language.
  7. emacs is a popular editor.
  8. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. 12, 2432–2439 (1995).
    [CrossRef]
  9. M. C. Bashaw, J. F. Heanue, A. Aharoni, J. F. Walkup, L. Hesselink, “Cross-talk considerations for angular and phase-encoded multiplexing in volume holography,” J. Opt. Soc. Am. B 11, 1820–1836 (1994).
    [CrossRef]
  10. S. Campbell, Y. Zhang, P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123, 27–33 (1996).
    [CrossRef]
  11. L. Rastani, “Storage capacity and cross talk in angularly multiplexed holograms: two case studies,” Appl. Opt. 32, 3772–3777 (1993).
    [CrossRef] [PubMed]
  12. H. Lee, “Cross-talk effects in multiplexed volume holograms,” Opt. Lett. 13, 874–876 (1988).
    [CrossRef] [PubMed]
  13. C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978–1983 (1992).
    [CrossRef]
  14. X. Yi, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994).
    [CrossRef] [PubMed]
  15. R. J. G. Smith, “Easily-decoded efficient self-orthogonal block codes,” Electron. Lett. 13, 173–174 (1977).
    [CrossRef]
  16. P. G. Farrell, “A survey of array error control codes,” Eur. J. Telecommun. 3, 441–453 (1992).
    [CrossRef]
  17. B. J. Goertzen, P. A. Mitkas, “Error-correcting code for volume holographic storage of a relational database,” Opt. Lett. 20, 1655–1657 (1995).
    [CrossRef] [PubMed]

1997

L. J. Irakliotis, C. W. Wilmsen, P. A. Mitkas, “The optical memory/electronic computer interface as a parallel processing architecture,” J. Parallel Distrib. Comput. 41, 67–77 (1997).
[CrossRef]

1996

1995

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. 12, 2432–2439 (1995).
[CrossRef]

B. J. Goertzen, P. A. Mitkas, “Error-correcting code for volume holographic storage of a relational database,” Opt. Lett. 20, 1655–1657 (1995).
[CrossRef] [PubMed]

1994

1993

1992

1988

1977

R. J. G. Smith, “Easily-decoded efficient self-orthogonal block codes,” Electron. Lett. 13, 173–174 (1977).
[CrossRef]

1963

Aharoni, A.

Bashaw, M. C.

Bernal, M.-P.

Campbell, S.

S. Campbell, Y. Zhang, P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123, 27–33 (1996).
[CrossRef]

Coufal, H.

Farrell, P. G.

P. G. Farrell, “A survey of array error control codes,” Eur. J. Telecommun. 3, 441–453 (1992).
[CrossRef]

Goertzen, B. J.

Grygier, R. K.

Gu, C.

Heanue, J. F.

Hesselink, L.

Hoffnagle, J. A.

Hong, J.

Irakliotis, L. J.

L. J. Irakliotis, C. W. Wilmsen, P. A. Mitkas, “The optical memory/electronic computer interface as a parallel processing architecture,” J. Parallel Distrib. Comput. 41, 67–77 (1997).
[CrossRef]

Jefferson, C. M.

Lee, H.

Macfarlane, R. M.

McMichael, I.

Mitkas, P. A.

L. J. Irakliotis, C. W. Wilmsen, P. A. Mitkas, “The optical memory/electronic computer interface as a parallel processing architecture,” J. Parallel Distrib. Comput. 41, 67–77 (1997).
[CrossRef]

B. J. Goertzen, P. A. Mitkas, “Error-correcting code for volume holographic storage of a relational database,” Opt. Lett. 20, 1655–1657 (1995).
[CrossRef] [PubMed]

Mok, F.

Rastani, L.

Saxena, R.

Shelby, R. M.

Sincerbox, G. T.

Smith, R. J. G.

R. J. G. Smith, “Easily-decoded efficient self-orthogonal block codes,” Electron. Lett. 13, 173–174 (1977).
[CrossRef]

van Heerden, P. J.

Walkup, J. F.

Wilmsen, C. W.

L. J. Irakliotis, C. W. Wilmsen, P. A. Mitkas, “The optical memory/electronic computer interface as a parallel processing architecture,” J. Parallel Distrib. Comput. 41, 67–77 (1997).
[CrossRef]

Wimmer, P.

Wittman, G.

Yeh, P.

S. Campbell, Y. Zhang, P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123, 27–33 (1996).
[CrossRef]

X. Yi, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994).
[CrossRef] [PubMed]

Yi, X.

Zhang, Y.

S. Campbell, Y. Zhang, P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123, 27–33 (1996).
[CrossRef]

Appl. Opt.

Electron. Lett.

R. J. G. Smith, “Easily-decoded efficient self-orthogonal block codes,” Electron. Lett. 13, 173–174 (1977).
[CrossRef]

Eur. J. Telecommun.

P. G. Farrell, “A survey of array error control codes,” Eur. J. Telecommun. 3, 441–453 (1992).
[CrossRef]

J. Opt. Soc. Am.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. 12, 2432–2439 (1995).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Parallel Distrib. Comput.

L. J. Irakliotis, C. W. Wilmsen, P. A. Mitkas, “The optical memory/electronic computer interface as a parallel processing architecture,” J. Parallel Distrib. Comput. 41, 67–77 (1997).
[CrossRef]

Opt. Commun.

S. Campbell, Y. Zhang, P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123, 27–33 (1996).
[CrossRef]

Opt. Lett.

Other

P. A. Mitkas, ed., Proceedings of the Workshop on Data Encoding for Page-Oriented Optical memories (DEPOM’96) (Colorado State University College of Engineering, Ft. Collins, Colo., 1997).

Khoral Research, Inc., khoros 2.1 Developer’s Manual (Khoral Research, Inc., Albuquerque, New Mexico, 1996).

perl (practical extraction and report language) is a programming language.

emacs is a popular editor.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Primary stages of oasis. ECC, error-correcting code.

Fig. 2
Fig. 2

Error groups in an angularly multiplexed holographic memory.

Fig. 3
Fig. 3

Averaged extraction of oversampled data bits.

Fig. 4
Fig. 4

(a) Simulated memory readout with (b) a full histogram and (c) a subsampled extraction histogram.

Fig. 5
Fig. 5

Sample data patterns from different stages of a simulation.

Fig. 6
Fig. 6

Top-level simulator workspace form.

Fig. 7
Fig. 7

Part of the Error Generation stage that implements the interpixel cross talk and displays related information.

Fig. 8
Fig. 8

Simulation of error generation in a volume holographic memory system.

Fig. 9
Fig. 9

Comparison of two codes for Gaussian beam profile errors.

Fig. 10
Fig. 10

Comparison of two codes for blurring errors.

Fig. 11
Fig. 11

(a) Input and (b) output of memory.

Fig. 12
Fig. 12

Full parallel error simulation. SSE, sum-squared error.

Fig. 13
Fig. 13

Squared error after simulation.

Tables (1)

Tables Icon

Table 1 Error Processes Currently Available in oasis

Metrics