Abstract

The computer-aided design of photonic systems offers many advantages for systems design, optimization, and planning. We present a comparison of two simulation packages for photonic-device, circuit, and system design. Both were developed by the Australian Photonics Cooperative Research Centre: the optoelectronic, photonic, and advanced laser simulator performs step-by-step simulations on complex photonic devices, circuits, and systems, allowing for backward waves and compound resonators; the gigabit optical link designer uses block processing of periodic waveforms to give an efficient estimation of eye diagrams and bit-error rates of time-division-multiplexed and wavelength-division-multiplexed systems. The gigabit optical link designer and the optoelectronic, photonic advanced laser simulator are compared, and examples of typical applications are given.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kazi, E. Donkor, “VHDL as a modeling and simulation platform for optical communication systems and devices,” Opt. Eng. 34, 1450–1455 (1995).
    [CrossRef]
  2. J. A. R. Williams, K. Sugden, L. Zhang, I. Bennion, N. J. Doran, “In-fiber grating systems for pulse compression and complete dispersion compensation,” in IEE Colloquium on Optical Fibre Gratings and their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995).
  3. G. L. Cariolaro, R. Corvaja, G. Pierobon, “Exact performance evaluation of lightwave systems with optical preamplifier,” Eur. Trans. Telecommun. Related Technol. 5, 757–766 (1994).
    [CrossRef]
  4. P. J. Corvini, T. L. Koch, “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers,” J. Lightwave Technol. 5, 1591–1595 (1987).
    [CrossRef]
  5. P. J. Corvini, T. L. Koch, “Semiconductor laser chirping-induced dispersive distortion in high-bit-rate optical fiber communications systems,” IEEE International Conference on Communications ’88: Digital Technology—Spanning the Universe (IEEE, New York, 1988), Vol. 2, pp. 584–587.
  6. J. C. Cartledge, G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightwave Technol. 7, 568–573 (1989).
    [CrossRef]
  7. T. Stephens, K. Hinton, T. Anderson, B. Clarke, “Laser turn-on delay and chirp noise effects in Gb/s intensity-modulated direct-detection systems,” J. Lightwave Technol. 13, 666–674 (1995).
    [CrossRef]
  8. K. B. Letaief, “Performance analysis of digital lightwave systems using efficient computer simulation techniques,” IEEE Trans. Commun. 43, 240–251 (1995).
    [CrossRef]
  9. E. I. Ackerman, J. L. Prince, J. A. MacDonald, “Signal and noise analysis of external modulation fiber optic link with optical component and arbitrary lossless matching circuits,” in 1995 IEEE MTT-S International Microwave Symposium, (Tech. Dig. 95CH3577-4) (IEEE, New York, 1995), Vol. 3, pp. 1173–1176.
  10. A. Naka, S. Saito, “In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion,” J. Lightwave Technol. 12, 280–287 (1994).
    [CrossRef]
  11. S. Yamamoto, H. Taga, H. Wakabayashi, “Computer simulation of signal transmission characteristics in optical fiber communication system using LiNbO3 Mach–Zehnder modulator,” Trans. Inst. Electron. Inf. Commun. Eng. E E73, 481–484 (1990).
  12. J. A. J. Fells, I. H. White, R. V. Penty, M. A. Gibbon, G. H. B. Thompson, “Optimisation of the chirp performance of electroabsorption modulators using a numerical system model,” in Proceedings of the Twentieth European Conference on Optical Communication, ECOC ’94 (Istituto Internazionale delle Communicazioni, Genova, Italy, 1994), Vol. 1, pp. 403–406.
  13. J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
    [CrossRef]
  14. A. F. Elrefaie, R. E. Wagner, D. A. Atlas, D. G. Daut, “Chromatic dispersion limitations in coherent lightwave systems,” J. Lightwave Technol. 6, 704–709 (1988).
    [CrossRef]
  15. T. D. Stephens, “Modelling and analysis of high bit rate systems,” in Proceedings of the Nineteenth Australian Conference on Optical Fibre Technology (ACOFT ’94) (Institution of Radio and Electronics Engineers Society, Edgecliffe, New South Wales, Australia, 1994), pp. 20–23.
  16. P. L. Mason, R. V. Penty, I. H. White, “Extending the transmission distance of a directly modulated laser source using Bragg grating dispersion,” in IEE Colloquium on Optical Fibre Gratings and Their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995), pp. 12/1–12/5.
  17. D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
    [CrossRef]
  18. R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, R. M. Derosier, “Four-photon mixing and WDM systems,” J. Lightwave Technol. 13, 841–849 (1995).
    [CrossRef]
  19. S. Tariq, J. C. Palais, “A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications,” J. Lightwave Technol. 11, 1914–1924 (1993).
    [CrossRef]
  20. O. Tageman, “Models of optical fibre transmission for HSpice,” Elektronik 43, 118, 120, 122–6 (1994).
  21. J. Zhou, S. D. Walker, “Novel simulation tools for high speed optical fibre communication systems operations,” in Digest of the Third Bangor Symposium on Communications (University of Wales, Bangor, Wales, 1991), pp. 263–266.
  22. E. Gay, E. Guillard, M. Le Ligne, D. Hui Bon Hoa, “A computer program for the simulation of telecommunication systems: application to optical transmission systems. I,” Ann. Telecommun. 50, 379–388 (1995).
  23. E. Gay, M. Le Ligne, D. Hui Bon Hoa, “An example of the use of the Comsis software: simulation of an optical network which uses wavelength multiplexing, FSK modulation format and direct detection. II,” Ann. Telecommun. 50, 389–400 (1995).
  24. S. V. Ahamed, V. B. Lawrence, “A PC based CAD environment for fiber optic simulations,” in GLOBECOM ’89. IEEE Global Telecommunications Conference and Exhibition. Communications Technology for the 1990s and Beyond, 89CH2682-3 (IEEE, New York, 1989), Vol. 2, pp. 696–701.
  25. A. J. Lowery, “Computer-aided photonics design,” IEEE Spectrum 34(4), 26–31 (1997).
    [CrossRef]
  26. A. J. Lowery, “Semiconductor device and lightwave system performance modeling,” in Optical Fiber Communications Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper ThG5.
  27. G. J. Pendock, “WDM transmission simulator,” in Second Optoelectronics and Communications Conference, (OECC ’97), (OECC ’97 Organising Committee, Kwangju Institute of Science and Technology, Korea, 1997), Vol. 1, pp. 296–297.
  28. OPALS was initially developed by the Australian Photonics Cooperative Research Centre at the University of Melbourne. It is now a product of Virtual Photonics Pty Ltd. (info@vp.com.au).
  29. GOLD was initially developed by the Australian Photonics Cooperative Research Centre at the University of Melbourne. It is now a product of Virtual Photonics Pty Ltd. (info@vp.com.au).
  30. Broad-NED is a product of Broadband Network Design, Berlin, Germany.
  31. B. K. Whitlock, J. J. Morikuni, E. Conforti, M.-K. Sung, “Simulation and modelling: simulating optical interconnects,” IEEE Circuits Devices Mag. 11(5), 12–18 (1995).
    [CrossRef]
  32. labview is registered trademark of National Instruments Inc., Austin, Tex.
  33. A. J. Lowery, P. C. R. Gurney, “Computer-aided design of photonic circuits and systems,” in Second Optoelectronics and Communications Conference (OECC ’97) (OECC ’97 Organising Committee, Kwangju Institute of Science and Technology, Korea, 1997), Vol. 1, pp. 260–261.
  34. A. J. Lowery, “A new dynamic semiconductor laser model based on the transmission-line modelling method,” Proc. Inst. Electr. Eng. Optoelectron. 134, 281–289 (1987).
  35. A. J. Lowery, A. J. Keating, C. N. Murtonen, “Modeling the static and dynamic behavior of quarter-wave shifted DFB lasers,” IEEE J. Quantum Electron. 28, 1874–1883 (1992).
    [CrossRef]
  36. A. J. Lowery, “Relaxation oscillations due to asymmetric spatial hole-burning in uniform DFB semiconductor lasers,” Electron. Lett. 29, 1852–1853 (1993).
    [CrossRef]
  37. A. J. Lowery, “New time-domain model for active mode-locking based on the transmission-line laser model,” Proc. Inst. Electr. Eng. Optoelectron. 136, 264–272 (1989).
  38. A. J. Lowery, “Transmission-line laser modelling of semiconductor laser amplified optical communications systems,” Proc. Inst. Electr. Eng. Optoelectron. 139, 180–188 (1992).
  39. A. J. Lowery, “Modelling ultra-short pulses (less than the cavity transit time) in semiconductor laser amplifiers,” Int. J. Optoelectron. 3, 497–508 (1988).
  40. P. C. R. Gurney, A. J. Lowery, “Dynamics of an all-optical clock recovery system,” in Proceedings of the Nineteenth Australian Conference on Optical Fibre Technology (ACOFT ’94) (Institution of Radio and Electronics Engineers Society, Edgecliffe, New South Wales, Australia, 1994), pp. 302–305.
  41. G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, H. Soda, “Data rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1840 (1995).
    [CrossRef]
  42. P. C. R. Gurney, A. J. Lowery, “Simulation of laser sources for millimeter-wave signal generation,” in Physics and Simulation of Optoelectronic Devices V, Photonics West ’97, M. Osinski, W. W. Chow, eds., Proc. SPIE2994, 493–503 (1997).
    [CrossRef]
  43. A. J. Lowery, P. C. R. Gurney, “Comparison of optical processing techniques for optical microwave signal generation,” IEEE Trans. Microwave Theory Tech. 46, 142–150 (1998).
    [CrossRef]
  44. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).
  45. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes,” J. Opt. Soc. Am. A 5, 392–402 (1988).
    [CrossRef]
  46. M. Premaratne, A. J. Lowery, D. Novak, “Modeling noise and modulation performance of fiber grating external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 290–303 (1997).
    [CrossRef]

1998 (1)

A. J. Lowery, P. C. R. Gurney, “Comparison of optical processing techniques for optical microwave signal generation,” IEEE Trans. Microwave Theory Tech. 46, 142–150 (1998).
[CrossRef]

1997 (2)

M. Premaratne, A. J. Lowery, D. Novak, “Modeling noise and modulation performance of fiber grating external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 290–303 (1997).
[CrossRef]

A. J. Lowery, “Computer-aided photonics design,” IEEE Spectrum 34(4), 26–31 (1997).
[CrossRef]

1995 (8)

B. K. Whitlock, J. J. Morikuni, E. Conforti, M.-K. Sung, “Simulation and modelling: simulating optical interconnects,” IEEE Circuits Devices Mag. 11(5), 12–18 (1995).
[CrossRef]

E. Gay, E. Guillard, M. Le Ligne, D. Hui Bon Hoa, “A computer program for the simulation of telecommunication systems: application to optical transmission systems. I,” Ann. Telecommun. 50, 379–388 (1995).

E. Gay, M. Le Ligne, D. Hui Bon Hoa, “An example of the use of the Comsis software: simulation of an optical network which uses wavelength multiplexing, FSK modulation format and direct detection. II,” Ann. Telecommun. 50, 389–400 (1995).

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, R. M. Derosier, “Four-photon mixing and WDM systems,” J. Lightwave Technol. 13, 841–849 (1995).
[CrossRef]

T. Stephens, K. Hinton, T. Anderson, B. Clarke, “Laser turn-on delay and chirp noise effects in Gb/s intensity-modulated direct-detection systems,” J. Lightwave Technol. 13, 666–674 (1995).
[CrossRef]

K. B. Letaief, “Performance analysis of digital lightwave systems using efficient computer simulation techniques,” IEEE Trans. Commun. 43, 240–251 (1995).
[CrossRef]

K. Kazi, E. Donkor, “VHDL as a modeling and simulation platform for optical communication systems and devices,” Opt. Eng. 34, 1450–1455 (1995).
[CrossRef]

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, H. Soda, “Data rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1840 (1995).
[CrossRef]

1994 (4)

O. Tageman, “Models of optical fibre transmission for HSpice,” Elektronik 43, 118, 120, 122–6 (1994).

G. L. Cariolaro, R. Corvaja, G. Pierobon, “Exact performance evaluation of lightwave systems with optical preamplifier,” Eur. Trans. Telecommun. Related Technol. 5, 757–766 (1994).
[CrossRef]

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
[CrossRef]

A. Naka, S. Saito, “In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion,” J. Lightwave Technol. 12, 280–287 (1994).
[CrossRef]

1993 (2)

S. Tariq, J. C. Palais, “A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications,” J. Lightwave Technol. 11, 1914–1924 (1993).
[CrossRef]

A. J. Lowery, “Relaxation oscillations due to asymmetric spatial hole-burning in uniform DFB semiconductor lasers,” Electron. Lett. 29, 1852–1853 (1993).
[CrossRef]

1992 (2)

A. J. Lowery, A. J. Keating, C. N. Murtonen, “Modeling the static and dynamic behavior of quarter-wave shifted DFB lasers,” IEEE J. Quantum Electron. 28, 1874–1883 (1992).
[CrossRef]

A. J. Lowery, “Transmission-line laser modelling of semiconductor laser amplified optical communications systems,” Proc. Inst. Electr. Eng. Optoelectron. 139, 180–188 (1992).

1991 (1)

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

1990 (1)

S. Yamamoto, H. Taga, H. Wakabayashi, “Computer simulation of signal transmission characteristics in optical fiber communication system using LiNbO3 Mach–Zehnder modulator,” Trans. Inst. Electron. Inf. Commun. Eng. E E73, 481–484 (1990).

1989 (2)

J. C. Cartledge, G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightwave Technol. 7, 568–573 (1989).
[CrossRef]

A. J. Lowery, “New time-domain model for active mode-locking based on the transmission-line laser model,” Proc. Inst. Electr. Eng. Optoelectron. 136, 264–272 (1989).

1988 (3)

A. J. Lowery, “Modelling ultra-short pulses (less than the cavity transit time) in semiconductor laser amplifiers,” Int. J. Optoelectron. 3, 497–508 (1988).

C. R. Menyuk, “Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes,” J. Opt. Soc. Am. A 5, 392–402 (1988).
[CrossRef]

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, D. G. Daut, “Chromatic dispersion limitations in coherent lightwave systems,” J. Lightwave Technol. 6, 704–709 (1988).
[CrossRef]

1987 (2)

P. J. Corvini, T. L. Koch, “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers,” J. Lightwave Technol. 5, 1591–1595 (1987).
[CrossRef]

A. J. Lowery, “A new dynamic semiconductor laser model based on the transmission-line modelling method,” Proc. Inst. Electr. Eng. Optoelectron. 134, 281–289 (1987).

Ackerman, E. I.

E. I. Ackerman, J. L. Prince, J. A. MacDonald, “Signal and noise analysis of external modulation fiber optic link with optical component and arbitrary lossless matching circuits,” in 1995 IEEE MTT-S International Microwave Symposium, (Tech. Dig. 95CH3577-4) (IEEE, New York, 1995), Vol. 3, pp. 1173–1176.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).

Ahamed, S. V.

S. V. Ahamed, V. B. Lawrence, “A PC based CAD environment for fiber optic simulations,” in GLOBECOM ’89. IEEE Global Telecommunications Conference and Exhibition. Communications Technology for the 1990s and Beyond, 89CH2682-3 (IEEE, New York, 1989), Vol. 2, pp. 696–701.

Anderson, T.

T. Stephens, K. Hinton, T. Anderson, B. Clarke, “Laser turn-on delay and chirp noise effects in Gb/s intensity-modulated direct-detection systems,” J. Lightwave Technol. 13, 666–674 (1995).
[CrossRef]

Armistead, C. J.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
[CrossRef]

Atlas, D. A.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, D. G. Daut, “Chromatic dispersion limitations in coherent lightwave systems,” J. Lightwave Technol. 6, 704–709 (1988).
[CrossRef]

Bennion, I.

J. A. R. Williams, K. Sugden, L. Zhang, I. Bennion, N. J. Doran, “In-fiber grating systems for pulse compression and complete dispersion compensation,” in IEE Colloquium on Optical Fibre Gratings and their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995).

Burley, G. S.

J. C. Cartledge, G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightwave Technol. 7, 568–573 (1989).
[CrossRef]

Cariolaro, G. L.

G. L. Cariolaro, R. Corvaja, G. Pierobon, “Exact performance evaluation of lightwave systems with optical preamplifier,” Eur. Trans. Telecommun. Related Technol. 5, 757–766 (1994).
[CrossRef]

Cartledge, J. C.

J. C. Cartledge, G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightwave Technol. 7, 568–573 (1989).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, R. M. Derosier, “Four-photon mixing and WDM systems,” J. Lightwave Technol. 13, 841–849 (1995).
[CrossRef]

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

Clarke, B.

T. Stephens, K. Hinton, T. Anderson, B. Clarke, “Laser turn-on delay and chirp noise effects in Gb/s intensity-modulated direct-detection systems,” J. Lightwave Technol. 13, 666–674 (1995).
[CrossRef]

Conforti, E.

B. K. Whitlock, J. J. Morikuni, E. Conforti, M.-K. Sung, “Simulation and modelling: simulating optical interconnects,” IEEE Circuits Devices Mag. 11(5), 12–18 (1995).
[CrossRef]

Corvaja, R.

G. L. Cariolaro, R. Corvaja, G. Pierobon, “Exact performance evaluation of lightwave systems with optical preamplifier,” Eur. Trans. Telecommun. Related Technol. 5, 757–766 (1994).
[CrossRef]

Corvini, P. J.

P. J. Corvini, T. L. Koch, “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers,” J. Lightwave Technol. 5, 1591–1595 (1987).
[CrossRef]

P. J. Corvini, T. L. Koch, “Semiconductor laser chirping-induced dispersive distortion in high-bit-rate optical fiber communications systems,” IEEE International Conference on Communications ’88: Digital Technology—Spanning the Universe (IEEE, New York, 1988), Vol. 2, pp. 584–587.

Daut, D. G.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, D. G. Daut, “Chromatic dispersion limitations in coherent lightwave systems,” J. Lightwave Technol. 6, 704–709 (1988).
[CrossRef]

Derosier, R. M.

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, R. M. Derosier, “Four-photon mixing and WDM systems,” J. Lightwave Technol. 13, 841–849 (1995).
[CrossRef]

Donkor, E.

K. Kazi, E. Donkor, “VHDL as a modeling and simulation platform for optical communication systems and devices,” Opt. Eng. 34, 1450–1455 (1995).
[CrossRef]

Doran, N. J.

J. A. R. Williams, K. Sugden, L. Zhang, I. Bennion, N. J. Doran, “In-fiber grating systems for pulse compression and complete dispersion compensation,” in IEE Colloquium on Optical Fibre Gratings and their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995).

Elrefaie, A. F.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, D. G. Daut, “Chromatic dispersion limitations in coherent lightwave systems,” J. Lightwave Technol. 6, 704–709 (1988).
[CrossRef]

Fells, J. A. J.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
[CrossRef]

J. A. J. Fells, I. H. White, R. V. Penty, M. A. Gibbon, G. H. B. Thompson, “Optimisation of the chirp performance of electroabsorption modulators using a numerical system model,” in Proceedings of the Twentieth European Conference on Optical Communication, ECOC ’94 (Istituto Internazionale delle Communicazioni, Genova, Italy, 1994), Vol. 1, pp. 403–406.

Forghieri, F.

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, R. M. Derosier, “Four-photon mixing and WDM systems,” J. Lightwave Technol. 13, 841–849 (1995).
[CrossRef]

Gay, E.

E. Gay, E. Guillard, M. Le Ligne, D. Hui Bon Hoa, “A computer program for the simulation of telecommunication systems: application to optical transmission systems. I,” Ann. Telecommun. 50, 379–388 (1995).

E. Gay, M. Le Ligne, D. Hui Bon Hoa, “An example of the use of the Comsis software: simulation of an optical network which uses wavelength multiplexing, FSK modulation format and direct detection. II,” Ann. Telecommun. 50, 389–400 (1995).

Gibbon, M. A.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
[CrossRef]

J. A. J. Fells, I. H. White, R. V. Penty, M. A. Gibbon, G. H. B. Thompson, “Optimisation of the chirp performance of electroabsorption modulators using a numerical system model,” in Proceedings of the Twentieth European Conference on Optical Communication, ECOC ’94 (Istituto Internazionale delle Communicazioni, Genova, Italy, 1994), Vol. 1, pp. 403–406.

Gnauck, A. H.

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, R. M. Derosier, “Four-photon mixing and WDM systems,” J. Lightwave Technol. 13, 841–849 (1995).
[CrossRef]

Guillard, E.

E. Gay, E. Guillard, M. Le Ligne, D. Hui Bon Hoa, “A computer program for the simulation of telecommunication systems: application to optical transmission systems. I,” Ann. Telecommun. 50, 379–388 (1995).

Gurney, P. C. R.

A. J. Lowery, P. C. R. Gurney, “Comparison of optical processing techniques for optical microwave signal generation,” IEEE Trans. Microwave Theory Tech. 46, 142–150 (1998).
[CrossRef]

P. C. R. Gurney, A. J. Lowery, “Simulation of laser sources for millimeter-wave signal generation,” in Physics and Simulation of Optoelectronic Devices V, Photonics West ’97, M. Osinski, W. W. Chow, eds., Proc. SPIE2994, 493–503 (1997).
[CrossRef]

P. C. R. Gurney, A. J. Lowery, “Dynamics of an all-optical clock recovery system,” in Proceedings of the Nineteenth Australian Conference on Optical Fibre Technology (ACOFT ’94) (Institution of Radio and Electronics Engineers Society, Edgecliffe, New South Wales, Australia, 1994), pp. 302–305.

A. J. Lowery, P. C. R. Gurney, “Computer-aided design of photonic circuits and systems,” in Second Optoelectronics and Communications Conference (OECC ’97) (OECC ’97 Organising Committee, Kwangju Institute of Science and Technology, Korea, 1997), Vol. 1, pp. 260–261.

Higashi, T.

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, H. Soda, “Data rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1840 (1995).
[CrossRef]

Hinton, K.

T. Stephens, K. Hinton, T. Anderson, B. Clarke, “Laser turn-on delay and chirp noise effects in Gb/s intensity-modulated direct-detection systems,” J. Lightwave Technol. 13, 666–674 (1995).
[CrossRef]

Hui Bon Hoa, D.

E. Gay, M. Le Ligne, D. Hui Bon Hoa, “An example of the use of the Comsis software: simulation of an optical network which uses wavelength multiplexing, FSK modulation format and direct detection. II,” Ann. Telecommun. 50, 389–400 (1995).

E. Gay, E. Guillard, M. Le Ligne, D. Hui Bon Hoa, “A computer program for the simulation of telecommunication systems: application to optical transmission systems. I,” Ann. Telecommun. 50, 379–388 (1995).

Kazi, K.

K. Kazi, E. Donkor, “VHDL as a modeling and simulation platform for optical communication systems and devices,” Opt. Eng. 34, 1450–1455 (1995).
[CrossRef]

Keating, A. J.

A. J. Lowery, A. J. Keating, C. N. Murtonen, “Modeling the static and dynamic behavior of quarter-wave shifted DFB lasers,” IEEE J. Quantum Electron. 28, 1874–1883 (1992).
[CrossRef]

Kimber, E. M.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
[CrossRef]

Koay, G. L.

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, H. Soda, “Data rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1840 (1995).
[CrossRef]

Koch, T. L.

P. J. Corvini, T. L. Koch, “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers,” J. Lightwave Technol. 5, 1591–1595 (1987).
[CrossRef]

P. J. Corvini, T. L. Koch, “Semiconductor laser chirping-induced dispersive distortion in high-bit-rate optical fiber communications systems,” IEEE International Conference on Communications ’88: Digital Technology—Spanning the Universe (IEEE, New York, 1988), Vol. 2, pp. 584–587.

Lawrence, V. B.

S. V. Ahamed, V. B. Lawrence, “A PC based CAD environment for fiber optic simulations,” in GLOBECOM ’89. IEEE Global Telecommunications Conference and Exhibition. Communications Technology for the 1990s and Beyond, 89CH2682-3 (IEEE, New York, 1989), Vol. 2, pp. 696–701.

Le Ligne, M.

E. Gay, E. Guillard, M. Le Ligne, D. Hui Bon Hoa, “A computer program for the simulation of telecommunication systems: application to optical transmission systems. I,” Ann. Telecommun. 50, 379–388 (1995).

E. Gay, M. Le Ligne, D. Hui Bon Hoa, “An example of the use of the Comsis software: simulation of an optical network which uses wavelength multiplexing, FSK modulation format and direct detection. II,” Ann. Telecommun. 50, 389–400 (1995).

Letaief, K. B.

K. B. Letaief, “Performance analysis of digital lightwave systems using efficient computer simulation techniques,” IEEE Trans. Commun. 43, 240–251 (1995).
[CrossRef]

Lowery, A. J.

A. J. Lowery, P. C. R. Gurney, “Comparison of optical processing techniques for optical microwave signal generation,” IEEE Trans. Microwave Theory Tech. 46, 142–150 (1998).
[CrossRef]

A. J. Lowery, “Computer-aided photonics design,” IEEE Spectrum 34(4), 26–31 (1997).
[CrossRef]

M. Premaratne, A. J. Lowery, D. Novak, “Modeling noise and modulation performance of fiber grating external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 290–303 (1997).
[CrossRef]

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, H. Soda, “Data rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1840 (1995).
[CrossRef]

A. J. Lowery, “Relaxation oscillations due to asymmetric spatial hole-burning in uniform DFB semiconductor lasers,” Electron. Lett. 29, 1852–1853 (1993).
[CrossRef]

A. J. Lowery, “Transmission-line laser modelling of semiconductor laser amplified optical communications systems,” Proc. Inst. Electr. Eng. Optoelectron. 139, 180–188 (1992).

A. J. Lowery, A. J. Keating, C. N. Murtonen, “Modeling the static and dynamic behavior of quarter-wave shifted DFB lasers,” IEEE J. Quantum Electron. 28, 1874–1883 (1992).
[CrossRef]

A. J. Lowery, “New time-domain model for active mode-locking based on the transmission-line laser model,” Proc. Inst. Electr. Eng. Optoelectron. 136, 264–272 (1989).

A. J. Lowery, “Modelling ultra-short pulses (less than the cavity transit time) in semiconductor laser amplifiers,” Int. J. Optoelectron. 3, 497–508 (1988).

A. J. Lowery, “A new dynamic semiconductor laser model based on the transmission-line modelling method,” Proc. Inst. Electr. Eng. Optoelectron. 134, 281–289 (1987).

P. C. R. Gurney, A. J. Lowery, “Dynamics of an all-optical clock recovery system,” in Proceedings of the Nineteenth Australian Conference on Optical Fibre Technology (ACOFT ’94) (Institution of Radio and Electronics Engineers Society, Edgecliffe, New South Wales, Australia, 1994), pp. 302–305.

P. C. R. Gurney, A. J. Lowery, “Simulation of laser sources for millimeter-wave signal generation,” in Physics and Simulation of Optoelectronic Devices V, Photonics West ’97, M. Osinski, W. W. Chow, eds., Proc. SPIE2994, 493–503 (1997).
[CrossRef]

A. J. Lowery, P. C. R. Gurney, “Computer-aided design of photonic circuits and systems,” in Second Optoelectronics and Communications Conference (OECC ’97) (OECC ’97 Organising Committee, Kwangju Institute of Science and Technology, Korea, 1997), Vol. 1, pp. 260–261.

A. J. Lowery, “Semiconductor device and lightwave system performance modeling,” in Optical Fiber Communications Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper ThG5.

MacDonald, J. A.

E. I. Ackerman, J. L. Prince, J. A. MacDonald, “Signal and noise analysis of external modulation fiber optic link with optical component and arbitrary lossless matching circuits,” in 1995 IEEE MTT-S International Microwave Symposium, (Tech. Dig. 95CH3577-4) (IEEE, New York, 1995), Vol. 3, pp. 1173–1176.

Marcuse, D.

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

Mason, P. L.

P. L. Mason, R. V. Penty, I. H. White, “Extending the transmission distance of a directly modulated laser source using Bragg grating dispersion,” in IEE Colloquium on Optical Fibre Gratings and Their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995), pp. 12/1–12/5.

Menyuk, C. R.

C. R. Menyuk, “Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes,” J. Opt. Soc. Am. A 5, 392–402 (1988).
[CrossRef]

Morikuni, J. J.

B. K. Whitlock, J. J. Morikuni, E. Conforti, M.-K. Sung, “Simulation and modelling: simulating optical interconnects,” IEEE Circuits Devices Mag. 11(5), 12–18 (1995).
[CrossRef]

Moule, D. J.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
[CrossRef]

Murtonen, C. N.

A. J. Lowery, A. J. Keating, C. N. Murtonen, “Modeling the static and dynamic behavior of quarter-wave shifted DFB lasers,” IEEE J. Quantum Electron. 28, 1874–1883 (1992).
[CrossRef]

Naka, A.

A. Naka, S. Saito, “In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion,” J. Lightwave Technol. 12, 280–287 (1994).
[CrossRef]

Novak, D.

M. Premaratne, A. J. Lowery, D. Novak, “Modeling noise and modulation performance of fiber grating external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 290–303 (1997).
[CrossRef]

Ogita, S.

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, H. Soda, “Data rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1840 (1995).
[CrossRef]

Palais, J. C.

S. Tariq, J. C. Palais, “A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications,” J. Lightwave Technol. 11, 1914–1924 (1993).
[CrossRef]

Pendock, G. J.

G. J. Pendock, “WDM transmission simulator,” in Second Optoelectronics and Communications Conference, (OECC ’97), (OECC ’97 Organising Committee, Kwangju Institute of Science and Technology, Korea, 1997), Vol. 1, pp. 296–297.

Penty, R. V.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
[CrossRef]

J. A. J. Fells, I. H. White, R. V. Penty, M. A. Gibbon, G. H. B. Thompson, “Optimisation of the chirp performance of electroabsorption modulators using a numerical system model,” in Proceedings of the Twentieth European Conference on Optical Communication, ECOC ’94 (Istituto Internazionale delle Communicazioni, Genova, Italy, 1994), Vol. 1, pp. 403–406.

P. L. Mason, R. V. Penty, I. H. White, “Extending the transmission distance of a directly modulated laser source using Bragg grating dispersion,” in IEE Colloquium on Optical Fibre Gratings and Their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995), pp. 12/1–12/5.

Pierobon, G.

G. L. Cariolaro, R. Corvaja, G. Pierobon, “Exact performance evaluation of lightwave systems with optical preamplifier,” Eur. Trans. Telecommun. Related Technol. 5, 757–766 (1994).
[CrossRef]

Premaratne, M.

M. Premaratne, A. J. Lowery, D. Novak, “Modeling noise and modulation performance of fiber grating external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 290–303 (1997).
[CrossRef]

Prince, J. L.

E. I. Ackerman, J. L. Prince, J. A. MacDonald, “Signal and noise analysis of external modulation fiber optic link with optical component and arbitrary lossless matching circuits,” in 1995 IEEE MTT-S International Microwave Symposium, (Tech. Dig. 95CH3577-4) (IEEE, New York, 1995), Vol. 3, pp. 1173–1176.

Saito, S.

A. Naka, S. Saito, “In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion,” J. Lightwave Technol. 12, 280–287 (1994).
[CrossRef]

Soda, H.

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, H. Soda, “Data rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1840 (1995).
[CrossRef]

Stephens, T.

T. Stephens, K. Hinton, T. Anderson, B. Clarke, “Laser turn-on delay and chirp noise effects in Gb/s intensity-modulated direct-detection systems,” J. Lightwave Technol. 13, 666–674 (1995).
[CrossRef]

Stephens, T. D.

T. D. Stephens, “Modelling and analysis of high bit rate systems,” in Proceedings of the Nineteenth Australian Conference on Optical Fibre Technology (ACOFT ’94) (Institution of Radio and Electronics Engineers Society, Edgecliffe, New South Wales, Australia, 1994), pp. 20–23.

Sugden, K.

J. A. R. Williams, K. Sugden, L. Zhang, I. Bennion, N. J. Doran, “In-fiber grating systems for pulse compression and complete dispersion compensation,” in IEE Colloquium on Optical Fibre Gratings and their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995).

Sung, M.-K.

B. K. Whitlock, J. J. Morikuni, E. Conforti, M.-K. Sung, “Simulation and modelling: simulating optical interconnects,” IEEE Circuits Devices Mag. 11(5), 12–18 (1995).
[CrossRef]

Taga, H.

S. Yamamoto, H. Taga, H. Wakabayashi, “Computer simulation of signal transmission characteristics in optical fiber communication system using LiNbO3 Mach–Zehnder modulator,” Trans. Inst. Electron. Inf. Commun. Eng. E E73, 481–484 (1990).

Tageman, O.

O. Tageman, “Models of optical fibre transmission for HSpice,” Elektronik 43, 118, 120, 122–6 (1994).

Tariq, S.

S. Tariq, J. C. Palais, “A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications,” J. Lightwave Technol. 11, 1914–1924 (1993).
[CrossRef]

Thompson, G. H. B.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
[CrossRef]

J. A. J. Fells, I. H. White, R. V. Penty, M. A. Gibbon, G. H. B. Thompson, “Optimisation of the chirp performance of electroabsorption modulators using a numerical system model,” in Proceedings of the Twentieth European Conference on Optical Communication, ECOC ’94 (Istituto Internazionale delle Communicazioni, Genova, Italy, 1994), Vol. 1, pp. 403–406.

Thrush, E. J.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
[CrossRef]

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, R. M. Derosier, “Four-photon mixing and WDM systems,” J. Lightwave Technol. 13, 841–849 (1995).
[CrossRef]

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

Tucker, R. S.

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, H. Soda, “Data rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1840 (1995).
[CrossRef]

Wagner, R. E.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, D. G. Daut, “Chromatic dispersion limitations in coherent lightwave systems,” J. Lightwave Technol. 6, 704–709 (1988).
[CrossRef]

Wakabayashi, H.

S. Yamamoto, H. Taga, H. Wakabayashi, “Computer simulation of signal transmission characteristics in optical fiber communication system using LiNbO3 Mach–Zehnder modulator,” Trans. Inst. Electron. Inf. Commun. Eng. E E73, 481–484 (1990).

Walker, S. D.

J. Zhou, S. D. Walker, “Novel simulation tools for high speed optical fibre communication systems operations,” in Digest of the Third Bangor Symposium on Communications (University of Wales, Bangor, Wales, 1991), pp. 263–266.

White, I. H.

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
[CrossRef]

P. L. Mason, R. V. Penty, I. H. White, “Extending the transmission distance of a directly modulated laser source using Bragg grating dispersion,” in IEE Colloquium on Optical Fibre Gratings and Their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995), pp. 12/1–12/5.

J. A. J. Fells, I. H. White, R. V. Penty, M. A. Gibbon, G. H. B. Thompson, “Optimisation of the chirp performance of electroabsorption modulators using a numerical system model,” in Proceedings of the Twentieth European Conference on Optical Communication, ECOC ’94 (Istituto Internazionale delle Communicazioni, Genova, Italy, 1994), Vol. 1, pp. 403–406.

Whitlock, B. K.

B. K. Whitlock, J. J. Morikuni, E. Conforti, M.-K. Sung, “Simulation and modelling: simulating optical interconnects,” IEEE Circuits Devices Mag. 11(5), 12–18 (1995).
[CrossRef]

Williams, J. A. R.

J. A. R. Williams, K. Sugden, L. Zhang, I. Bennion, N. J. Doran, “In-fiber grating systems for pulse compression and complete dispersion compensation,” in IEE Colloquium on Optical Fibre Gratings and their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995).

Yamamoto, S.

S. Yamamoto, H. Taga, H. Wakabayashi, “Computer simulation of signal transmission characteristics in optical fiber communication system using LiNbO3 Mach–Zehnder modulator,” Trans. Inst. Electron. Inf. Commun. Eng. E E73, 481–484 (1990).

Zhang, L.

J. A. R. Williams, K. Sugden, L. Zhang, I. Bennion, N. J. Doran, “In-fiber grating systems for pulse compression and complete dispersion compensation,” in IEE Colloquium on Optical Fibre Gratings and their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995).

Zhou, J.

J. Zhou, S. D. Walker, “Novel simulation tools for high speed optical fibre communication systems operations,” in Digest of the Third Bangor Symposium on Communications (University of Wales, Bangor, Wales, 1991), pp. 263–266.

Ann. Telecommun. (2)

E. Gay, E. Guillard, M. Le Ligne, D. Hui Bon Hoa, “A computer program for the simulation of telecommunication systems: application to optical transmission systems. I,” Ann. Telecommun. 50, 379–388 (1995).

E. Gay, M. Le Ligne, D. Hui Bon Hoa, “An example of the use of the Comsis software: simulation of an optical network which uses wavelength multiplexing, FSK modulation format and direct detection. II,” Ann. Telecommun. 50, 389–400 (1995).

Electron. Lett. (2)

A. J. Lowery, “Relaxation oscillations due to asymmetric spatial hole-burning in uniform DFB semiconductor lasers,” Electron. Lett. 29, 1852–1853 (1993).
[CrossRef]

J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168–1169 (1994).
[CrossRef]

Elektronik (1)

O. Tageman, “Models of optical fibre transmission for HSpice,” Elektronik 43, 118, 120, 122–6 (1994).

Eur. Trans. Telecommun. Related Technol. (1)

G. L. Cariolaro, R. Corvaja, G. Pierobon, “Exact performance evaluation of lightwave systems with optical preamplifier,” Eur. Trans. Telecommun. Related Technol. 5, 757–766 (1994).
[CrossRef]

IEEE Circuits Devices Mag. (1)

B. K. Whitlock, J. J. Morikuni, E. Conforti, M.-K. Sung, “Simulation and modelling: simulating optical interconnects,” IEEE Circuits Devices Mag. 11(5), 12–18 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. J. Lowery, A. J. Keating, C. N. Murtonen, “Modeling the static and dynamic behavior of quarter-wave shifted DFB lasers,” IEEE J. Quantum Electron. 28, 1874–1883 (1992).
[CrossRef]

G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita, H. Soda, “Data rate dependence of suppression of reflection-induced intensity noise in Fabry–Perot semiconductor lasers,” IEEE J. Quantum Electron. 31, 1835–1840 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Premaratne, A. J. Lowery, D. Novak, “Modeling noise and modulation performance of fiber grating external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 290–303 (1997).
[CrossRef]

IEEE Spectrum (1)

A. J. Lowery, “Computer-aided photonics design,” IEEE Spectrum 34(4), 26–31 (1997).
[CrossRef]

IEEE Trans. Commun. (1)

K. B. Letaief, “Performance analysis of digital lightwave systems using efficient computer simulation techniques,” IEEE Trans. Commun. 43, 240–251 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A. J. Lowery, P. C. R. Gurney, “Comparison of optical processing techniques for optical microwave signal generation,” IEEE Trans. Microwave Theory Tech. 46, 142–150 (1998).
[CrossRef]

Int. J. Optoelectron. (1)

A. J. Lowery, “Modelling ultra-short pulses (less than the cavity transit time) in semiconductor laser amplifiers,” Int. J. Optoelectron. 3, 497–508 (1988).

J. Lightwave Technol. (8)

J. C. Cartledge, G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightwave Technol. 7, 568–573 (1989).
[CrossRef]

T. Stephens, K. Hinton, T. Anderson, B. Clarke, “Laser turn-on delay and chirp noise effects in Gb/s intensity-modulated direct-detection systems,” J. Lightwave Technol. 13, 666–674 (1995).
[CrossRef]

P. J. Corvini, T. L. Koch, “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers,” J. Lightwave Technol. 5, 1591–1595 (1987).
[CrossRef]

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, D. G. Daut, “Chromatic dispersion limitations in coherent lightwave systems,” J. Lightwave Technol. 6, 704–709 (1988).
[CrossRef]

A. Naka, S. Saito, “In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion,” J. Lightwave Technol. 12, 280–287 (1994).
[CrossRef]

D. Marcuse, A. R. Chraplyvy, R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–128 (1991).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, R. M. Derosier, “Four-photon mixing and WDM systems,” J. Lightwave Technol. 13, 841–849 (1995).
[CrossRef]

S. Tariq, J. C. Palais, “A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications,” J. Lightwave Technol. 11, 1914–1924 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

C. R. Menyuk, “Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes,” J. Opt. Soc. Am. A 5, 392–402 (1988).
[CrossRef]

Opt. Eng. (1)

K. Kazi, E. Donkor, “VHDL as a modeling and simulation platform for optical communication systems and devices,” Opt. Eng. 34, 1450–1455 (1995).
[CrossRef]

Proc. Inst. Electr. Eng. Optoelectron. (3)

A. J. Lowery, “New time-domain model for active mode-locking based on the transmission-line laser model,” Proc. Inst. Electr. Eng. Optoelectron. 136, 264–272 (1989).

A. J. Lowery, “Transmission-line laser modelling of semiconductor laser amplified optical communications systems,” Proc. Inst. Electr. Eng. Optoelectron. 139, 180–188 (1992).

A. J. Lowery, “A new dynamic semiconductor laser model based on the transmission-line modelling method,” Proc. Inst. Electr. Eng. Optoelectron. 134, 281–289 (1987).

Trans. Inst. Electron. Inf. Commun. Eng. E (1)

S. Yamamoto, H. Taga, H. Wakabayashi, “Computer simulation of signal transmission characteristics in optical fiber communication system using LiNbO3 Mach–Zehnder modulator,” Trans. Inst. Electron. Inf. Commun. Eng. E E73, 481–484 (1990).

Other (18)

J. A. J. Fells, I. H. White, R. V. Penty, M. A. Gibbon, G. H. B. Thompson, “Optimisation of the chirp performance of electroabsorption modulators using a numerical system model,” in Proceedings of the Twentieth European Conference on Optical Communication, ECOC ’94 (Istituto Internazionale delle Communicazioni, Genova, Italy, 1994), Vol. 1, pp. 403–406.

T. D. Stephens, “Modelling and analysis of high bit rate systems,” in Proceedings of the Nineteenth Australian Conference on Optical Fibre Technology (ACOFT ’94) (Institution of Radio and Electronics Engineers Society, Edgecliffe, New South Wales, Australia, 1994), pp. 20–23.

P. L. Mason, R. V. Penty, I. H. White, “Extending the transmission distance of a directly modulated laser source using Bragg grating dispersion,” in IEE Colloquium on Optical Fibre Gratings and Their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995), pp. 12/1–12/5.

J. A. R. Williams, K. Sugden, L. Zhang, I. Bennion, N. J. Doran, “In-fiber grating systems for pulse compression and complete dispersion compensation,” in IEE Colloquium on Optical Fibre Gratings and their Applications, Tech. Dig. 1995/017 (Institution of Electrical Engineers, London, 1995).

P. J. Corvini, T. L. Koch, “Semiconductor laser chirping-induced dispersive distortion in high-bit-rate optical fiber communications systems,” IEEE International Conference on Communications ’88: Digital Technology—Spanning the Universe (IEEE, New York, 1988), Vol. 2, pp. 584–587.

E. I. Ackerman, J. L. Prince, J. A. MacDonald, “Signal and noise analysis of external modulation fiber optic link with optical component and arbitrary lossless matching circuits,” in 1995 IEEE MTT-S International Microwave Symposium, (Tech. Dig. 95CH3577-4) (IEEE, New York, 1995), Vol. 3, pp. 1173–1176.

labview is registered trademark of National Instruments Inc., Austin, Tex.

A. J. Lowery, P. C. R. Gurney, “Computer-aided design of photonic circuits and systems,” in Second Optoelectronics and Communications Conference (OECC ’97) (OECC ’97 Organising Committee, Kwangju Institute of Science and Technology, Korea, 1997), Vol. 1, pp. 260–261.

P. C. R. Gurney, A. J. Lowery, “Dynamics of an all-optical clock recovery system,” in Proceedings of the Nineteenth Australian Conference on Optical Fibre Technology (ACOFT ’94) (Institution of Radio and Electronics Engineers Society, Edgecliffe, New South Wales, Australia, 1994), pp. 302–305.

A. J. Lowery, “Semiconductor device and lightwave system performance modeling,” in Optical Fiber Communications Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper ThG5.

G. J. Pendock, “WDM transmission simulator,” in Second Optoelectronics and Communications Conference, (OECC ’97), (OECC ’97 Organising Committee, Kwangju Institute of Science and Technology, Korea, 1997), Vol. 1, pp. 296–297.

OPALS was initially developed by the Australian Photonics Cooperative Research Centre at the University of Melbourne. It is now a product of Virtual Photonics Pty Ltd. (info@vp.com.au).

GOLD was initially developed by the Australian Photonics Cooperative Research Centre at the University of Melbourne. It is now a product of Virtual Photonics Pty Ltd. (info@vp.com.au).

Broad-NED is a product of Broadband Network Design, Berlin, Germany.

J. Zhou, S. D. Walker, “Novel simulation tools for high speed optical fibre communication systems operations,” in Digest of the Third Bangor Symposium on Communications (University of Wales, Bangor, Wales, 1991), pp. 263–266.

S. V. Ahamed, V. B. Lawrence, “A PC based CAD environment for fiber optic simulations,” in GLOBECOM ’89. IEEE Global Telecommunications Conference and Exhibition. Communications Technology for the 1990s and Beyond, 89CH2682-3 (IEEE, New York, 1989), Vol. 2, pp. 696–701.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).

P. C. R. Gurney, A. J. Lowery, “Simulation of laser sources for millimeter-wave signal generation,” in Physics and Simulation of Optoelectronic Devices V, Photonics West ’97, M. Osinski, W. W. Chow, eds., Proc. SPIE2994, 493–503 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

OPALS multisection, multicontact semiconductor laser simulation: schematic diagram. TF’s, labview Boolean control; SGL, labview graph display; DFB, distributed feedback; OSA, optical spectrum analyzer; PSD, power spectral density; TRF, time-resolved frequency analyzer.

Fig. 2
Fig. 2

Multisection, multicontact semiconductor laser frequency pulsations.

Fig. 3
Fig. 3

Multisection, multicontact semiconductor laser time-averaged spectrum.

Fig. 4
Fig. 4

OPALS schematic diagram for simulating a Bragg-grating-stabilized FP laser.

Fig. 5
Fig. 5

(a) Single-mode spectrum of a Bragg-stabilized FP laser. (b) Spectrum of a FP laser with no Bragg stabilization.

Fig. 6
Fig. 6

OPALS simulation of a four-channel WDM system with dispersion compensation. EDFA, erbium-doped fiber amplifier.

Fig. 7
Fig. 7

OPALS WDM system receiver output after 60 km of fiber (uncompensated).

Fig. 8
Fig. 8

OPALS WDM system showing 120-km compensated transmission by use of a 9-dB postamplifier.

Fig. 9
Fig. 9

OPALS WDM system showing a spectrum after 120-km compensated transmission by use of a 16-dB postamplifier showing intermodulation resulting from fiber nonlinearities.

Fig. 10
Fig. 10

Four-channel 1000-km WDM system: GOLD schematic diagram. BW’s, bandwidths; LPF’s, electrical low-pass filters; MOD’s, optical modulators.

Fig. 11
Fig. 11

GOLD WDM simulation showing (a) an eye diagram and (b) an optical spectrum after 400 km of fiber.

Fig. 12
Fig. 12

GOLD WDM simulation showing (a) an eye diagram and (b) an optical spectrum after 1000 km of fiber.

Fig. 13
Fig. 13

GOLD long-haul multispan system: schematic diagram. OF, optical fiber; DCF, dispersion-compensating fiber.

Fig. 14
Fig. 14

GOLD long-haul multispan system: eye diagram.

Fig. 15
Fig. 15

GOLD schematic diagram of a duobinary system.

Fig. 16
Fig. 16

Eye diagram predicted by the GOLD simulation of Fig. 15.

Tables (1)

Tables Icon

Table 1 Key Differences between OPALS and GOLD

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A x z = D ˜ + Ñ A x , D ˜ = - i 2   β 2 2 T 2 + 1 6   β 3 3 T 3 - α 2 , Ñ = i γ | A x | 2 - T R | A x | 2 T .
f ϕ = - β 2 2 ω - ω 0 2 - β 3 6 ω - ω 0 3 + ω - ω 0 ω 0   π ,

Metrics