Abstract

comsis, which stands for communication systems interactive software, is a computer-aided-design tool based on a time approach. It allows the design, analysis, and performance optimization of optical transmission systems by use of various optical devices. comsis allows scalar or vectorial simulations, depending on whether the polarization is taken into account. An overview concerning the optical component models is given. A new model of an erbium-doped fiber amplifier allows the user to describe the amplifier through either physical or system parameters by using silicate or fluoride glass fibers or any other material, provided the user can give a file that contains the amplifier’s characteristics. The new model of a single-mode fiber allows the user to describe chromatic dispersion through a constant, a function, or a file (given by the user) and to take optionally into account the Kerr and the Raman effects and the polarization-mode dispersion. The simulation tools that are used to characterize the quality of an optical transmission system are also presented. To show the system’s full range of capabilities in the optical domain, we describe examples of wavelength-division-multiplexing and soliton-transmission systems.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Zhang, J. E. Caroll, “Large-signal dynamic model of the DFB laser,” IEEE J. Quantum Electron. 38, 604–611 (1992).
    [CrossRef]
  2. C. Guang-Hua, P. Gallion, G. P. Agrawal, “Dynamic and noise properties of tunable multielectrode semiconductor lasers including spatial hole burning and nonlinear gain,” IEEE J. Quantum Electron. 29, 844–855 (1993).
    [CrossRef]
  3. M. G. Davis, R. F. O’Dowd, “A transfer matrix-based analysis of multielectrode DFB lasers,” IEEE Photon. Technol. Lett. 3, 603–605 (1991).
    [CrossRef]
  4. A. J. Lowery, “Transmission-line modelling of semiconductor laser: the transmission-line laser model,” Int. J. Num. Model. Electron. Network Devices Fields 2, 249–265 (1989).
    [CrossRef]
  5. P. J. Corvini, T. L. Koch, “Computer simulation of high bit rate optical fiber transmission using single frequency lasers,” J. Lightwave Technol. LT-5, 1591–1595 (1987).
    [CrossRef]
  6. F. Koyama, K. Iga, “Frequency chirping in external modulator,” J. Lightwave Technol. 6, 87–93 (1988).
    [CrossRef]
  7. O. Mitomi, S. Nojima, I. Kotaka, K. Wkita, K. Kauano, M. Naganuma, “Chirping characteristic and frequency response of MQW optical intensity modulator,” J. Lightwave Technol. 10, 71–77 (1992).
    [CrossRef]
  8. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Van Styland, “Kramer–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
    [CrossRef]
  9. F. Devaux, Y. Sorel, J. F. Kerdiles, “Chirp measurement and transmission experiment at 10 Gbit/s with Wannier–Stark modulator,” Electron. Lett. 29, 814–816 (1993).
    [CrossRef]
  10. P. L. François, “Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain,” J. Opt. Soc. Am. B 8, 276–293 (1991).
    [CrossRef]
  11. M. Le Ligné, S. Mottet, “Theory of signal degradation in semiconductor laser amplifiers in direct detection systems,” J. Lightwave Technol. 9, 266–270 (1991).
  12. M. J. Adams, J. V. Collins, I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEEE Proc. Part J 132, 58–63 (1985).
  13. C. R. Giles, E. Desurvire, “Modelling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
    [CrossRef]
  14. T. Georges, E. Delevaque, “Analytic modelling of high-gain erbium-doped fiber amplifiers,” Opt. Lett. 17, 1113–1115 (1992).
    [CrossRef] [PubMed]
  15. P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
    [CrossRef]
  16. J. Patault, “Comparaison des Performances des Systèmes Multiplexés en Longueur d’Onde et de la Transmission Soliton Monocanale dans les Fibres Optiques,” Ph. D. dissertation (Rennes I University, Rennes, France, 1996).
  17. comsis was developed and marketed by IPSIS, 3 Square du Chêne Germain, 35510 Cesson Sevigne, France. E-mail: support.technique@ipsis.galeode.fr.

1993 (2)

C. Guang-Hua, P. Gallion, G. P. Agrawal, “Dynamic and noise properties of tunable multielectrode semiconductor lasers including spatial hole burning and nonlinear gain,” IEEE J. Quantum Electron. 29, 844–855 (1993).
[CrossRef]

F. Devaux, Y. Sorel, J. F. Kerdiles, “Chirp measurement and transmission experiment at 10 Gbit/s with Wannier–Stark modulator,” Electron. Lett. 29, 814–816 (1993).
[CrossRef]

1992 (4)

T. Georges, E. Delevaque, “Analytic modelling of high-gain erbium-doped fiber amplifiers,” Opt. Lett. 17, 1113–1115 (1992).
[CrossRef] [PubMed]

L. M. Zhang, J. E. Caroll, “Large-signal dynamic model of the DFB laser,” IEEE J. Quantum Electron. 38, 604–611 (1992).
[CrossRef]

O. Mitomi, S. Nojima, I. Kotaka, K. Wkita, K. Kauano, M. Naganuma, “Chirping characteristic and frequency response of MQW optical intensity modulator,” J. Lightwave Technol. 10, 71–77 (1992).
[CrossRef]

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Van Styland, “Kramer–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

1991 (4)

M. G. Davis, R. F. O’Dowd, “A transfer matrix-based analysis of multielectrode DFB lasers,” IEEE Photon. Technol. Lett. 3, 603–605 (1991).
[CrossRef]

C. R. Giles, E. Desurvire, “Modelling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

P. L. François, “Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain,” J. Opt. Soc. Am. B 8, 276–293 (1991).
[CrossRef]

M. Le Ligné, S. Mottet, “Theory of signal degradation in semiconductor laser amplifiers in direct detection systems,” J. Lightwave Technol. 9, 266–270 (1991).

1989 (1)

A. J. Lowery, “Transmission-line modelling of semiconductor laser: the transmission-line laser model,” Int. J. Num. Model. Electron. Network Devices Fields 2, 249–265 (1989).
[CrossRef]

1988 (1)

F. Koyama, K. Iga, “Frequency chirping in external modulator,” J. Lightwave Technol. 6, 87–93 (1988).
[CrossRef]

1987 (2)

P. J. Corvini, T. L. Koch, “Computer simulation of high bit rate optical fiber transmission using single frequency lasers,” J. Lightwave Technol. LT-5, 1591–1595 (1987).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

1985 (1)

M. J. Adams, J. V. Collins, I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEEE Proc. Part J 132, 58–63 (1985).

Adams, M. J.

M. J. Adams, J. V. Collins, I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEEE Proc. Part J 132, 58–63 (1985).

Agrawal, G. P.

C. Guang-Hua, P. Gallion, G. P. Agrawal, “Dynamic and noise properties of tunable multielectrode semiconductor lasers including spatial hole burning and nonlinear gain,” IEEE J. Quantum Electron. 29, 844–855 (1993).
[CrossRef]

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

Caroll, J. E.

L. M. Zhang, J. E. Caroll, “Large-signal dynamic model of the DFB laser,” IEEE J. Quantum Electron. 38, 604–611 (1992).
[CrossRef]

Collins, J. V.

M. J. Adams, J. V. Collins, I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEEE Proc. Part J 132, 58–63 (1985).

Corvini, P. J.

P. J. Corvini, T. L. Koch, “Computer simulation of high bit rate optical fiber transmission using single frequency lasers,” J. Lightwave Technol. LT-5, 1591–1595 (1987).
[CrossRef]

Davis, M. G.

M. G. Davis, R. F. O’Dowd, “A transfer matrix-based analysis of multielectrode DFB lasers,” IEEE Photon. Technol. Lett. 3, 603–605 (1991).
[CrossRef]

Delevaque, E.

Desurvire, E.

C. R. Giles, E. Desurvire, “Modelling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

Devaux, F.

F. Devaux, Y. Sorel, J. F. Kerdiles, “Chirp measurement and transmission experiment at 10 Gbit/s with Wannier–Stark modulator,” Electron. Lett. 29, 814–816 (1993).
[CrossRef]

François, P. L.

Gallion, P.

C. Guang-Hua, P. Gallion, G. P. Agrawal, “Dynamic and noise properties of tunable multielectrode semiconductor lasers including spatial hole burning and nonlinear gain,” IEEE J. Quantum Electron. 29, 844–855 (1993).
[CrossRef]

Georges, T.

Giles, C. R.

C. R. Giles, E. Desurvire, “Modelling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

Guang-Hua, C.

C. Guang-Hua, P. Gallion, G. P. Agrawal, “Dynamic and noise properties of tunable multielectrode semiconductor lasers including spatial hole burning and nonlinear gain,” IEEE J. Quantum Electron. 29, 844–855 (1993).
[CrossRef]

Hagan, D. J.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Van Styland, “Kramer–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Henning, I. D.

M. J. Adams, J. V. Collins, I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEEE Proc. Part J 132, 58–63 (1985).

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

Hutchings, D. C.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Van Styland, “Kramer–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Iga, K.

F. Koyama, K. Iga, “Frequency chirping in external modulator,” J. Lightwave Technol. 6, 87–93 (1988).
[CrossRef]

Kauano, K.

O. Mitomi, S. Nojima, I. Kotaka, K. Wkita, K. Kauano, M. Naganuma, “Chirping characteristic and frequency response of MQW optical intensity modulator,” J. Lightwave Technol. 10, 71–77 (1992).
[CrossRef]

Kerdiles, J. F.

F. Devaux, Y. Sorel, J. F. Kerdiles, “Chirp measurement and transmission experiment at 10 Gbit/s with Wannier–Stark modulator,” Electron. Lett. 29, 814–816 (1993).
[CrossRef]

Koch, T. L.

P. J. Corvini, T. L. Koch, “Computer simulation of high bit rate optical fiber transmission using single frequency lasers,” J. Lightwave Technol. LT-5, 1591–1595 (1987).
[CrossRef]

Kotaka, I.

O. Mitomi, S. Nojima, I. Kotaka, K. Wkita, K. Kauano, M. Naganuma, “Chirping characteristic and frequency response of MQW optical intensity modulator,” J. Lightwave Technol. 10, 71–77 (1992).
[CrossRef]

Koyama, F.

F. Koyama, K. Iga, “Frequency chirping in external modulator,” J. Lightwave Technol. 6, 87–93 (1988).
[CrossRef]

Le Ligné, M.

M. Le Ligné, S. Mottet, “Theory of signal degradation in semiconductor laser amplifiers in direct detection systems,” J. Lightwave Technol. 9, 266–270 (1991).

Lowery, A. J.

A. J. Lowery, “Transmission-line modelling of semiconductor laser: the transmission-line laser model,” Int. J. Num. Model. Electron. Network Devices Fields 2, 249–265 (1989).
[CrossRef]

Mitomi, O.

O. Mitomi, S. Nojima, I. Kotaka, K. Wkita, K. Kauano, M. Naganuma, “Chirping characteristic and frequency response of MQW optical intensity modulator,” J. Lightwave Technol. 10, 71–77 (1992).
[CrossRef]

Mottet, S.

M. Le Ligné, S. Mottet, “Theory of signal degradation in semiconductor laser amplifiers in direct detection systems,” J. Lightwave Technol. 9, 266–270 (1991).

Naganuma, M.

O. Mitomi, S. Nojima, I. Kotaka, K. Wkita, K. Kauano, M. Naganuma, “Chirping characteristic and frequency response of MQW optical intensity modulator,” J. Lightwave Technol. 10, 71–77 (1992).
[CrossRef]

Nojima, S.

O. Mitomi, S. Nojima, I. Kotaka, K. Wkita, K. Kauano, M. Naganuma, “Chirping characteristic and frequency response of MQW optical intensity modulator,” J. Lightwave Technol. 10, 71–77 (1992).
[CrossRef]

O’Dowd, R. F.

M. G. Davis, R. F. O’Dowd, “A transfer matrix-based analysis of multielectrode DFB lasers,” IEEE Photon. Technol. Lett. 3, 603–605 (1991).
[CrossRef]

Patault, J.

J. Patault, “Comparaison des Performances des Systèmes Multiplexés en Longueur d’Onde et de la Transmission Soliton Monocanale dans les Fibres Optiques,” Ph. D. dissertation (Rennes I University, Rennes, France, 1996).

Sheik-Bahae, M.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Van Styland, “Kramer–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Sorel, Y.

F. Devaux, Y. Sorel, J. F. Kerdiles, “Chirp measurement and transmission experiment at 10 Gbit/s with Wannier–Stark modulator,” Electron. Lett. 29, 814–816 (1993).
[CrossRef]

Van Styland, E. W.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Van Styland, “Kramer–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

Wkita, K.

O. Mitomi, S. Nojima, I. Kotaka, K. Wkita, K. Kauano, M. Naganuma, “Chirping characteristic and frequency response of MQW optical intensity modulator,” J. Lightwave Technol. 10, 71–77 (1992).
[CrossRef]

Zhang, L. M.

L. M. Zhang, J. E. Caroll, “Large-signal dynamic model of the DFB laser,” IEEE J. Quantum Electron. 38, 604–611 (1992).
[CrossRef]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

Electron. Lett. (1)

F. Devaux, Y. Sorel, J. F. Kerdiles, “Chirp measurement and transmission experiment at 10 Gbit/s with Wannier–Stark modulator,” Electron. Lett. 29, 814–816 (1993).
[CrossRef]

IEEE J. Quantum Electron. (3)

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

L. M. Zhang, J. E. Caroll, “Large-signal dynamic model of the DFB laser,” IEEE J. Quantum Electron. 38, 604–611 (1992).
[CrossRef]

C. Guang-Hua, P. Gallion, G. P. Agrawal, “Dynamic and noise properties of tunable multielectrode semiconductor lasers including spatial hole burning and nonlinear gain,” IEEE J. Quantum Electron. 29, 844–855 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. G. Davis, R. F. O’Dowd, “A transfer matrix-based analysis of multielectrode DFB lasers,” IEEE Photon. Technol. Lett. 3, 603–605 (1991).
[CrossRef]

IEEE Proc. Part J (1)

M. J. Adams, J. V. Collins, I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEEE Proc. Part J 132, 58–63 (1985).

Int. J. Num. Model. Electron. Network Devices Fields (1)

A. J. Lowery, “Transmission-line modelling of semiconductor laser: the transmission-line laser model,” Int. J. Num. Model. Electron. Network Devices Fields 2, 249–265 (1989).
[CrossRef]

J. Lightwave Technol. (5)

P. J. Corvini, T. L. Koch, “Computer simulation of high bit rate optical fiber transmission using single frequency lasers,” J. Lightwave Technol. LT-5, 1591–1595 (1987).
[CrossRef]

F. Koyama, K. Iga, “Frequency chirping in external modulator,” J. Lightwave Technol. 6, 87–93 (1988).
[CrossRef]

O. Mitomi, S. Nojima, I. Kotaka, K. Wkita, K. Kauano, M. Naganuma, “Chirping characteristic and frequency response of MQW optical intensity modulator,” J. Lightwave Technol. 10, 71–77 (1992).
[CrossRef]

C. R. Giles, E. Desurvire, “Modelling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991).
[CrossRef]

M. Le Ligné, S. Mottet, “Theory of signal degradation in semiconductor laser amplifiers in direct detection systems,” J. Lightwave Technol. 9, 266–270 (1991).

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, E. W. Van Styland, “Kramer–Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Other (2)

J. Patault, “Comparaison des Performances des Systèmes Multiplexés en Longueur d’Onde et de la Transmission Soliton Monocanale dans les Fibres Optiques,” Ph. D. dissertation (Rennes I University, Rennes, France, 1996).

comsis was developed and marketed by IPSIS, 3 Square du Chêne Germain, 35510 Cesson Sevigne, France. E-mail: support.technique@ipsis.galeode.fr.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

AM and FM responses of the laser: top, amplitude; bottom, phase.

Fig. 2
Fig. 2

Static analysis of the EDFA: (A) absorption and emission cross sections, (B) gain versus the wavelength, (C) gain versus the pump power, (D) gain versus the input power.

Fig. 3
Fig. 3

WDM transmission system: comsis’s block diagram.

Fig. 4
Fig. 4

Fiber input and output spectra (as functions of the wavelength) around the 1551-nm reference wavelength.

Fig. 5
Fig. 5

EDFA output spectrum around the 1551-nm reference wavelength.

Fig. 6
Fig. 6

Eye diagram at the reception of channel 1.

Fig. 7
Fig. 7

Raman self-pumping: The signal’s instantaneous power after 0, 2, 4, and 6 m.

Fig. 8
Fig. 8

Raman self-pumping: The spectrum after 0, 2, 4, and 6 m around the 1550-nm reference wavelength.

Fig. 9
Fig. 9

Interaction of orthogonal solitons: total field (sum of the x and the y components) instantaneous power after 10 (curve A), 120 (curve B), 160 (curve C), 200 (curve D), and 280 (curve E) km.

Fig. 10
Fig. 10

Interaction of orthogonal solitons: y-component instantaneous power after 10 (curve A), 120 (curve B), 160 (curve C), 200 (curve D), and 280 (curve E) km.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

d N d t = I qV act - N τ n - v g a 0 N - N 0 S 1 + S , d S d t = Γ v g a 0 N - N 0 S 1 + S - S τ p + Γ β N τ n , d ϕ d t = α 2 Γ v g a 0 N - N 0 - 1 τ n ,
I t = Att I 0 cos 2 K a V t exp j KpV t ,
I t = Att I 0 exp - V t V 0 a exp j ϕ t , ϕ t = - 1 2   α H     V V 0 a V d V + ϕ 0 ,
G z ,   t = A z ,   t exp   j ω 0 t - β 0 z ,
A z = - α 2   A + i 2   β 2 2 A t 2 + 1 6   β 3 3 A t 3 - i γ | A t | 2 A - i ξ S R t   *   | A t | 2 A .
A z = D + N A ,
D = - α 2 + i 2   β 2 2 t 2 + 1 6   β 3 3 t 3 .
N = - i γ | A | 2 - i ξ S r t   *   | A | 2 ,
S R Ω = 1 Ω R 2 - Ω 2 2 Γ R Ω R + i   Ω Ω R ,
i   P i in = i   P i out + P ASE + P spont ,
H x = i   P i in exp g v i x - 1 + P ASE + P spont = 0 ,
P ASE x = 4     σ e v x σ T v x - σ a v exp g v - 1 d v ,
P spont x = ANLx τ ,
ln P i out P i in = σ T v i x - σ a v i Γ v i NL = g v i = ln G v i ,
P 1 = 1.763 2 λ 0 3 | D | A eff 4 π 2 n 2 cT FWHM 2 × 10 - 12 .
A x z = - i γ 3 3 A x t | A x t | 2 + | A y t | 2 - A y t A x t A y * t - A x * t A y t ,

Metrics