Abstract

Recent interest in the detection and analysis of biological samples by spectroscopic methods has led to questions concerning the degree of distinguishability and biological variability of the UV fluorescent spectra from such complex samples. We show that the degree of distinguishability of such spectra is readily determined numerically. As a practical example of this technique, we show its application to the analysis of UV fluorescence spectra taken of E. coli, S. aureus, and S. typhimurium. The use of this analysis to determine the degree of biological variability and also to verify that measurements are being made in a linear regime in which analytic methods such as multivariate analysis are valid is discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Hill, R. G. Pinnick, G. Chen, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt. 34, 7149–7155 (1995).
    [CrossRef] [PubMed]
  2. B. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectros. 47, 436–440 (1993).
    [CrossRef]
  3. B. Bronk, L. Reinisch, P. Setlow, “UV fluorescence for sands of Saudi Arabia compared with typical microorganisms,” Wishful Research Result Rep. ERDEC-TR-079 (Edgewood Research, Development & Engineering Center, Aberdeen Proving Ground, Md. 21010–5423, 1993) (approved for public release; distribution is unlimited).
  4. A. Anders, “DNA fluorescence at room temperature by means of a dye laser,” Chem. Phys. Lett. 81, 270–272 (1981).
    [CrossRef]
  5. A. Anders, “Laser fluorescence spectroscopy of biomolecules: nucleic acids,” Opt. Eng. 22, 592–595 (1983).
    [CrossRef]
  6. P. Nachman, G. Chen, R. Pinnick, S. Hill, K. Chang, M. Mayo, G. Fernandez, “Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles,” Appl. Opt. 35, 1069–1076 (1996).
    [CrossRef] [PubMed]
  7. O. Kievit, J. Marijnissen, P. Verheijen, B. Scarlett, “On-line measurement of particle size and composition,” J. Aerosol Sci. 23, S301–S304 (1992).
    [CrossRef]
  8. M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacterial identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
    [CrossRef]
  9. J. Werkhaven, L. Reinisch, M. Sorrell, J. Tribbel, R. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
    [CrossRef] [PubMed]
  10. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
    [CrossRef]
  11. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vettering, Numerical Recipes the Art of Scientific Computing (Cambridge U. Press, New York, 1986).
  12. H. Martens, T. Naes, Multivariate Calibration (Wiley, New York, 1989).
  13. G. H. Gollub, C. F. V. Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1989).
  14. J. S. Wagner, M. W. Trahan, W. E. Nelson, G. C. Tisone, B. L. Preppernau, “How intelligent chemical recognition benefits from multivariate analysis and genetic optimization,” Comput. Phys. 10, 114–118 (1995).
  15. H. S. Wilf, Mathematics for the Physical Sciences (Wiley, New York, 1962).

1996

1995

J. S. Wagner, M. W. Trahan, W. E. Nelson, G. C. Tisone, B. L. Preppernau, “How intelligent chemical recognition benefits from multivariate analysis and genetic optimization,” Comput. Phys. 10, 114–118 (1995).

S. T. Hill, R. G. Pinnick, G. Chen, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt. 34, 7149–7155 (1995).
[CrossRef] [PubMed]

1994

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacterial identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

J. Werkhaven, L. Reinisch, M. Sorrell, J. Tribbel, R. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

1993

B. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectros. 47, 436–440 (1993).
[CrossRef]

1992

O. Kievit, J. Marijnissen, P. Verheijen, B. Scarlett, “On-line measurement of particle size and composition,” J. Aerosol Sci. 23, S301–S304 (1992).
[CrossRef]

1983

A. Anders, “Laser fluorescence spectroscopy of biomolecules: nucleic acids,” Opt. Eng. 22, 592–595 (1983).
[CrossRef]

1981

A. Anders, “DNA fluorescence at room temperature by means of a dye laser,” Chem. Phys. Lett. 81, 270–272 (1981).
[CrossRef]

Anders, A.

A. Anders, “Laser fluorescence spectroscopy of biomolecules: nucleic acids,” Opt. Eng. 22, 592–595 (1983).
[CrossRef]

A. Anders, “DNA fluorescence at room temperature by means of a dye laser,” Chem. Phys. Lett. 81, 270–272 (1981).
[CrossRef]

Bronk, B.

B. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectros. 47, 436–440 (1993).
[CrossRef]

B. Bronk, L. Reinisch, P. Setlow, “UV fluorescence for sands of Saudi Arabia compared with typical microorganisms,” Wishful Research Result Rep. ERDEC-TR-079 (Edgewood Research, Development & Engineering Center, Aberdeen Proving Ground, Md. 21010–5423, 1993) (approved for public release; distribution is unlimited).

Chang, K.

Chang, R. K.

Chen, G.

Fernandez, G.

Fernandez, G. L.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vettering, Numerical Recipes the Art of Scientific Computing (Cambridge U. Press, New York, 1986).

Gollub, G. H.

G. H. Gollub, C. F. V. Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1989).

Hill, S.

Hill, S. T.

Kievit, O.

O. Kievit, J. Marijnissen, P. Verheijen, B. Scarlett, “On-line measurement of particle size and composition,” J. Aerosol Sci. 23, S301–S304 (1992).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

Loan, C. F. V.

G. H. Gollub, C. F. V. Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1989).

Marijnissen, J.

O. Kievit, J. Marijnissen, P. Verheijen, B. Scarlett, “On-line measurement of particle size and composition,” J. Aerosol Sci. 23, S301–S304 (1992).
[CrossRef]

Martens, H.

H. Martens, T. Naes, Multivariate Calibration (Wiley, New York, 1989).

Mayo, M.

Mayo, M. W.

Nachman, P.

Naes, T.

H. Martens, T. Naes, Multivariate Calibration (Wiley, New York, 1989).

Nelson, W. E.

J. S. Wagner, M. W. Trahan, W. E. Nelson, G. C. Tisone, B. L. Preppernau, “How intelligent chemical recognition benefits from multivariate analysis and genetic optimization,” Comput. Phys. 10, 114–118 (1995).

Ossoff, R.

J. Werkhaven, L. Reinisch, M. Sorrell, J. Tribbel, R. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Ossoff, R. H.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacterial identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

Pinnick, R.

Pinnick, R. G.

Preppernau, B. L.

J. S. Wagner, M. W. Trahan, W. E. Nelson, G. C. Tisone, B. L. Preppernau, “How intelligent chemical recognition benefits from multivariate analysis and genetic optimization,” Comput. Phys. 10, 114–118 (1995).

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vettering, Numerical Recipes the Art of Scientific Computing (Cambridge U. Press, New York, 1986).

Reinisch, L.

J. Werkhaven, L. Reinisch, M. Sorrell, J. Tribbel, R. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacterial identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

B. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectros. 47, 436–440 (1993).
[CrossRef]

B. Bronk, L. Reinisch, P. Setlow, “UV fluorescence for sands of Saudi Arabia compared with typical microorganisms,” Wishful Research Result Rep. ERDEC-TR-079 (Edgewood Research, Development & Engineering Center, Aberdeen Proving Ground, Md. 21010–5423, 1993) (approved for public release; distribution is unlimited).

Scarlett, B.

O. Kievit, J. Marijnissen, P. Verheijen, B. Scarlett, “On-line measurement of particle size and composition,” J. Aerosol Sci. 23, S301–S304 (1992).
[CrossRef]

Setlow, P.

B. Bronk, L. Reinisch, P. Setlow, “UV fluorescence for sands of Saudi Arabia compared with typical microorganisms,” Wishful Research Result Rep. ERDEC-TR-079 (Edgewood Research, Development & Engineering Center, Aberdeen Proving Ground, Md. 21010–5423, 1993) (approved for public release; distribution is unlimited).

Sorrell, M.

J. Werkhaven, L. Reinisch, M. Sorrell, J. Tribbel, R. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Sorrell, M. J.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacterial identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vettering, Numerical Recipes the Art of Scientific Computing (Cambridge U. Press, New York, 1986).

Tisone, G. C.

J. S. Wagner, M. W. Trahan, W. E. Nelson, G. C. Tisone, B. L. Preppernau, “How intelligent chemical recognition benefits from multivariate analysis and genetic optimization,” Comput. Phys. 10, 114–118 (1995).

Trahan, M. W.

J. S. Wagner, M. W. Trahan, W. E. Nelson, G. C. Tisone, B. L. Preppernau, “How intelligent chemical recognition benefits from multivariate analysis and genetic optimization,” Comput. Phys. 10, 114–118 (1995).

Tribbel, J.

J. Werkhaven, L. Reinisch, M. Sorrell, J. Tribbel, R. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Tribble, J.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacterial identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

Verheijen, P.

O. Kievit, J. Marijnissen, P. Verheijen, B. Scarlett, “On-line measurement of particle size and composition,” J. Aerosol Sci. 23, S301–S304 (1992).
[CrossRef]

Vettering, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vettering, Numerical Recipes the Art of Scientific Computing (Cambridge U. Press, New York, 1986).

Wagner, J. S.

J. S. Wagner, M. W. Trahan, W. E. Nelson, G. C. Tisone, B. L. Preppernau, “How intelligent chemical recognition benefits from multivariate analysis and genetic optimization,” Comput. Phys. 10, 114–118 (1995).

Werkhaven, J.

J. Werkhaven, L. Reinisch, M. Sorrell, J. Tribbel, R. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Werkhaven, J. A.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacterial identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

Wilf, H. S.

H. S. Wilf, Mathematics for the Physical Sciences (Wiley, New York, 1962).

Appl. Opt.

Appl. Spectros.

B. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectros. 47, 436–440 (1993).
[CrossRef]

Chem. Phys. Lett.

A. Anders, “DNA fluorescence at room temperature by means of a dye laser,” Chem. Phys. Lett. 81, 270–272 (1981).
[CrossRef]

Comput. Phys.

J. S. Wagner, M. W. Trahan, W. E. Nelson, G. C. Tisone, B. L. Preppernau, “How intelligent chemical recognition benefits from multivariate analysis and genetic optimization,” Comput. Phys. 10, 114–118 (1995).

J. Aerosol Sci.

O. Kievit, J. Marijnissen, P. Verheijen, B. Scarlett, “On-line measurement of particle size and composition,” J. Aerosol Sci. 23, S301–S304 (1992).
[CrossRef]

Laryngoscope

J. Werkhaven, L. Reinisch, M. Sorrell, J. Tribbel, R. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Lasers Surg. Med.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacterial identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef]

Opt. Eng.

A. Anders, “Laser fluorescence spectroscopy of biomolecules: nucleic acids,” Opt. Eng. 22, 592–595 (1983).
[CrossRef]

Other

B. Bronk, L. Reinisch, P. Setlow, “UV fluorescence for sands of Saudi Arabia compared with typical microorganisms,” Wishful Research Result Rep. ERDEC-TR-079 (Edgewood Research, Development & Engineering Center, Aberdeen Proving Ground, Md. 21010–5423, 1993) (approved for public release; distribution is unlimited).

H. S. Wilf, Mathematics for the Physical Sciences (Wiley, New York, 1962).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vettering, Numerical Recipes the Art of Scientific Computing (Cambridge U. Press, New York, 1986).

H. Martens, T. Naes, Multivariate Calibration (Wiley, New York, 1989).

G. H. Gollub, C. F. V. Loan, Matrix Computations (Johns Hopkins U. Press, Baltimore, Md., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Multispectral signal of UV fluorescence from E. coli.

Fig. 2
Fig. 2

Examples of fluorescence spectra taken with the U.S. Department of Agriculture fluorometer: top, E. coli; middle, S. aureus; bottom, S. typhimurium.

Fig. 3
Fig. 3

MVA analysis of mixtures of S. aureus and S. typhimurium. Shown are the reference spectra and the spectra of three mixtures (25% S. aureus, 75% S. typhimurium; 50% S. aureus, 50% S. typhimurium; and 75% S. aureus, 25% S. typhimurium).

Fig. 4
Fig. 4

Orthogonal component for (top) E. coli versus S. aureus, (middle) S. typhimurium versus S. aureus, and (bottom) S. typhimurium versus E. coli. Differences were calculated with part of the signal resulting from fluorescence alone. Note that the signal is significantly greater for the top and the middle spectra compared with the bottom spectrum.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S 1 = CS 2 + δ S 1,2 ,
δ S 1,2 2 = S 1 - CS 2 2 χ 2 .
χ 2 C = 0
C max = S 1 S 2 S 2 2 .
δ S 1,2 = S 1 - C max S 2 .
S i , j 1 = CS i , j 2 + δ S i , j 1,2 .
C max = i , j   S i , j 1 S i , j 2 i , j S i , j 2 2 .

Metrics