Abstract

The refractive indices of several fused silica and calcium fluoride samples from different suppliers were measured with the minimum deviation method in the deep UV between 191 and 196 nm with a standard uncertainty of 7 ppm. For both materials the dispersion dn/dλ near 193 nm and 20 °C was determined. In addition, we measured the thermal coefficients of the refractive index near 193 nm and between 15 and 25 °C.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  2. O. R. Williams, T. J. Sumner, G. K. Rochester, G. K. Adams, “Upper limit to the thermal coefficient of the refractive index of fused silica at 184.9 nm,” Appl. Opt. 26, 774 (1987).
    [CrossRef]
  3. I. H. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2, 1103–1107 (1963).
    [CrossRef]
  4. F. J. Micheli, “Ueber den Einfluss der Temperatur auf die Dispersion ultravioletter Strahlen in Flusspat, Steinsalz, Quarz und Kalkspat,” Ann. Phys. (Leipzig) 7, 772–789 (1902).
  5. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), pp. 177–180.
  6. D. Tentori, J. R. Lerma, “Refractometry by minimum deviation: accuracy analysis,” Opt. Eng. 29, 160–168 (1990).
    [CrossRef]
  7. K. Danzmann, M. Guenther, J. Fischer, M. Kock, M. Kühne, “High current hollow cathode as a radiometric transfer standard source for the extreme vacuum ultraviolet,” Appl. Opt. 27, 4947–4951 (1988).
    [CrossRef] [PubMed]
  8. V. Kaufman, B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
    [CrossRef]
  9. J. Reader, C. H. Corliss, W. L. Wiese, G. A. Martin, “Wavelengths and transition probabilities for atoms and atomic ions,” U.S. Department of Commerce, National Bureau of Standards, Natl. Stand. Ref. Data Ser. NSRDS-NBS 68 (1980).
  10. K. P. Birch, M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
    [CrossRef]
  11. E. R. Peck, K. Reeder, “Dispersion of air,” J. Opt. Soc. Am. 62, 958–962 (1972).
    [CrossRef]

1993

K. P. Birch, M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

1990

D. Tentori, J. R. Lerma, “Refractometry by minimum deviation: accuracy analysis,” Opt. Eng. 29, 160–168 (1990).
[CrossRef]

1988

1987

1974

V. Kaufman, B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[CrossRef]

1972

1965

1963

1902

F. J. Micheli, “Ueber den Einfluss der Temperatur auf die Dispersion ultravioletter Strahlen in Flusspat, Steinsalz, Quarz und Kalkspat,” Ann. Phys. (Leipzig) 7, 772–789 (1902).

Adams, G. K.

Birch, K. P.

K. P. Birch, M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), pp. 177–180.

Danzmann, K.

Downs, M. J.

K. P. Birch, M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

Edlén, B.

V. Kaufman, B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[CrossRef]

Fischer, J.

Guenther, M.

Kaufman, V.

V. Kaufman, B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[CrossRef]

Kock, M.

Kühne, M.

Lerma, J. R.

D. Tentori, J. R. Lerma, “Refractometry by minimum deviation: accuracy analysis,” Opt. Eng. 29, 160–168 (1990).
[CrossRef]

Malitson, I. H.

Micheli, F. J.

F. J. Micheli, “Ueber den Einfluss der Temperatur auf die Dispersion ultravioletter Strahlen in Flusspat, Steinsalz, Quarz und Kalkspat,” Ann. Phys. (Leipzig) 7, 772–789 (1902).

Peck, E. R.

Reeder, K.

Rochester, G. K.

Sumner, T. J.

Tentori, D.

D. Tentori, J. R. Lerma, “Refractometry by minimum deviation: accuracy analysis,” Opt. Eng. 29, 160–168 (1990).
[CrossRef]

Williams, O. R.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), pp. 177–180.

Ann. Phys. (Leipzig)

F. J. Micheli, “Ueber den Einfluss der Temperatur auf die Dispersion ultravioletter Strahlen in Flusspat, Steinsalz, Quarz und Kalkspat,” Ann. Phys. (Leipzig) 7, 772–789 (1902).

Appl. Opt.

J. Opt. Soc. Am.

J. Phys. Chem. Ref. Data

V. Kaufman, B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[CrossRef]

Metrologia

K. P. Birch, M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

Opt. Eng.

D. Tentori, J. R. Lerma, “Refractometry by minimum deviation: accuracy analysis,” Opt. Eng. 29, 160–168 (1990).
[CrossRef]

Other

J. Reader, C. H. Corliss, W. L. Wiese, G. A. Martin, “Wavelengths and transition probabilities for atoms and atomic ions,” U.S. Department of Commerce, National Bureau of Standards, Natl. Stand. Ref. Data Ser. NSRDS-NBS 68 (1980).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), pp. 177–180.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the Gaertner goniometric spectrometer equipped with reflective optics: S1, entrance slit; S2, exit slit; M1, collimating mirror; and M2, focusing mirror.

Fig. 2
Fig. 2

Absolute refractive index of a fused silica sample as a function of wavelength between 191 and 196 nm at 20 °C. Uncertainties are too small to be shown with error bars.

Fig. 3
Fig. 3

Refractive indices of all measured fused silica samples at 193.39 nm and 20 °C from three suppliers (A, B, C).

Fig. 4
Fig. 4

Temperature dependence of the absolute refractive index of a fused silica sample at 194.5 nm. Between 15 and 25 °C the temperature coefficient dn/dt is (19.4 ± 2.2) × 10-6/°C.

Fig. 5
Fig. 5

Refractive indices of calcium fluoride samples at 193.39 nm and 20 °C from suppliers A and B. Here A1 and A2 represent two measurements of the same sample, A.

Tables (5)

Tables Icon

Table 1 Spectral Line Wavelengths Used in Measurements

Tables Icon

Table 2 Measured Refractive Indices of Fused Silica and Calcium Fluoride at 20 °C

Tables Icon

Table 3 Refractive Index and Dispersion of Fused Silica at 193.39 nma

Tables Icon

Table 4 Uncertainty Budget of Refractive-Index Measurements

Tables Icon

Table 5 Refractive Index and Dispersion of Calcium Fluoride at 193.39 nma

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n mat λ n air λ = sin α + δ λ 2 sin α 2 ,

Metrics