Abstract

We examine the possibility of using two- and three-phase systems suitable as standards for which the ellipsometric parameter Ψ remains insensitive to variations in the angle of incidence. These standards avoid propagation of errors in the angle of incidence with respect to the measured standard Ψ value. Different materials (dielectrics, metals, and semiconductors), adequate for the above purpose, are considered in different structure combinations, and their optical response are analyzed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  2. T. Yasuda, D. E. Aspnes, “Optical-standard surfaces of single-crystal silicon for calibrating ellipsometers and reflectometers,” Appl. Opt. 33, 7435–7438 (1994).
    [CrossRef] [PubMed]
  3. D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgongo, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Parvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, T. F. Thonn, “Multiple determination of the optical constants of thin film coating materials,” Appl. Opt. 23, 3571–3596 (1984).
    [CrossRef] [PubMed]
  4. J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
    [CrossRef]
  5. G. A. Candela, D. Chandler-Horowitz, J. F. Marchiando, D. B. Novotny, B. J. Belzer, M. C. Croarkin, Standard Reference Materials: Preparation and Certification of SRM-2530, Ellipsometric Parameters and Derived Thickness and Refractive Index of a Silicon Dioxide Layer on Silicon, NIST Spec. Publ. (National Institute of Standards and Technology, Gaithersburg, Md., 1988), 260–109.
  6. Standard Reference Material 2530 Series, available from the National Institute of Standards and Technology, Gaithersburg, Md. 20899.
  7. S. S. So, W. H. Knausenberger, K. Vedam, “Importance of the accuracy of setting the angle of incidence in ellipsometric measurements on surfaces immersed in liquids,” J. Opt. Soc. Am. 61, 124–126 (1971).
    [CrossRef]
  8. J. R. Zeidler, R. B. Kochles, N. M. Bashara, “Sensitivity of ellipsometric parameters to angle-of-incidence variations,” Appl. Opt. 13, 8, 1938–1945 (1974).
    [CrossRef]
  9. V. I. Psenicin, M. I. Abaev, N. Y. Lizlov, Ellipsometry in Physicochemical Investigations (Chimia, Leningrad, 1986) (in Russian).
  10. S. Y. Kim, K. Vedam, “Analytic solution of the pseudo-Brewster angle,” J. Opt. Soc. Am. A 3, 1772–1773 (1986).
    [CrossRef]
  11. C. J. Dell’oca, “Properties and anodization of evaporated aluminum films studied by ellipsometry,” Thin Solid Films 26, 371–380 (1975).
    [CrossRef]
  12. A. V. Rjanov, Principles of Ellipsometry (Nauka, Siberian Branch, Novosibirsk, Russia1979) (in Russian).
  13. I. Ohlidal, F. Lukes, “Analysis of semiconductor surfaces with very thin native oxide layers by combined immersion and multiple angle of incidence ellipsometry,” Appl. Surf. Sci. 35, 259–273 (1988–89).
    [CrossRef]
  14. F. Lukes, “Ellipsometry of silicon with natural surface film at 632.8 nm,” Phys. Status Solidi A 93, 223–230 (1986).
    [CrossRef]
  15. F. Lukes, “Temperature dependence of ellipsometric parameters of silicon,” Phys. Status Solidi A 102, 803–814 (1987).
    [CrossRef]
  16. S. C. Russev, L. Vassilev, V. Vulchev, L. Lutov, Tz. Argirov, “Growth of thin Ag2S films on silver layers: in situ ellipsometric and conductivity studies,” J. Phys. Condens. Matter 6, 6237–6244 (1994).
    [CrossRef]
  17. D. Beaglehole, “Isoellipsometric-parameter curves for layers on silicon,” J. Opt. Soc. Am. A 8, 2, 311–313 (1991).
    [CrossRef]
  18. E. Palik, ed., Handbook of Optical Constant of Solids (Academic, San Diego, Calif., 1985), p. 107.
  19. D. Aspnes, A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
    [CrossRef]
  20. D. Tonova, M. Depas, J. Vanhellemont, “Interpretation of spectroscopic ellipsometry measurements of ultrathin dielectric layers on silicon: impact of accuracy of the silicon optical constants,” Thin Solid Films 288, 64–68 (1996).
    [CrossRef]
  21. J. van der Meulen, N. C. Hien, “Design and operation of an automated, high-temperature ellipsometer,” J. Opt. Soc. Am. 64, 804–811 (1974).
    [CrossRef]
  22. P. Jellison, D. H. Lowndes, “Time-resolved ellipsometry,” Appl. Opt. 24, 2948–2955 (1985).
    [CrossRef] [PubMed]

1996 (1)

D. Tonova, M. Depas, J. Vanhellemont, “Interpretation of spectroscopic ellipsometry measurements of ultrathin dielectric layers on silicon: impact of accuracy of the silicon optical constants,” Thin Solid Films 288, 64–68 (1996).
[CrossRef]

1994 (2)

S. C. Russev, L. Vassilev, V. Vulchev, L. Lutov, Tz. Argirov, “Growth of thin Ag2S films on silver layers: in situ ellipsometric and conductivity studies,” J. Phys. Condens. Matter 6, 6237–6244 (1994).
[CrossRef]

T. Yasuda, D. E. Aspnes, “Optical-standard surfaces of single-crystal silicon for calibrating ellipsometers and reflectometers,” Appl. Opt. 33, 7435–7438 (1994).
[CrossRef] [PubMed]

1993 (1)

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

1991 (1)

D. Beaglehole, “Isoellipsometric-parameter curves for layers on silicon,” J. Opt. Soc. Am. A 8, 2, 311–313 (1991).
[CrossRef]

1987 (1)

F. Lukes, “Temperature dependence of ellipsometric parameters of silicon,” Phys. Status Solidi A 102, 803–814 (1987).
[CrossRef]

1986 (2)

S. Y. Kim, K. Vedam, “Analytic solution of the pseudo-Brewster angle,” J. Opt. Soc. Am. A 3, 1772–1773 (1986).
[CrossRef]

F. Lukes, “Ellipsometry of silicon with natural surface film at 632.8 nm,” Phys. Status Solidi A 93, 223–230 (1986).
[CrossRef]

1985 (1)

1984 (1)

1983 (1)

D. Aspnes, A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

1975 (1)

C. J. Dell’oca, “Properties and anodization of evaporated aluminum films studied by ellipsometry,” Thin Solid Films 26, 371–380 (1975).
[CrossRef]

1974 (2)

J. R. Zeidler, R. B. Kochles, N. M. Bashara, “Sensitivity of ellipsometric parameters to angle-of-incidence variations,” Appl. Opt. 13, 8, 1938–1945 (1974).
[CrossRef]

J. van der Meulen, N. C. Hien, “Design and operation of an automated, high-temperature ellipsometer,” J. Opt. Soc. Am. 64, 804–811 (1974).
[CrossRef]

1971 (1)

Abaev, M. I.

V. I. Psenicin, M. I. Abaev, N. Y. Lizlov, Ellipsometry in Physicochemical Investigations (Chimia, Leningrad, 1986) (in Russian).

Argirov, Tz.

S. C. Russev, L. Vassilev, V. Vulchev, L. Lutov, Tz. Argirov, “Growth of thin Ag2S films on silver layers: in situ ellipsometric and conductivity studies,” J. Phys. Condens. Matter 6, 6237–6244 (1994).
[CrossRef]

Armigliato, A.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Arndt, D. P.

Aspnes, D.

D. Aspnes, A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Aspnes, D. E.

Azzam, R. M. A.

Bashara, N. M.

J. R. Zeidler, R. B. Kochles, N. M. Bashara, “Sensitivity of ellipsometric parameters to angle-of-incidence variations,” Appl. Opt. 13, 8, 1938–1945 (1974).
[CrossRef]

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Beaglehole, D.

D. Beaglehole, “Isoellipsometric-parameter curves for layers on silicon,” J. Opt. Soc. Am. A 8, 2, 311–313 (1991).
[CrossRef]

Belzer, B. J.

G. A. Candela, D. Chandler-Horowitz, J. F. Marchiando, D. B. Novotny, B. J. Belzer, M. C. Croarkin, Standard Reference Materials: Preparation and Certification of SRM-2530, Ellipsometric Parameters and Derived Thickness and Refractive Index of a Silicon Dioxide Layer on Silicon, NIST Spec. Publ. (National Institute of Standards and Technology, Gaithersburg, Md., 1988), 260–109.

Bennett, J. M.

Borgongo, J. P.

Candela, G. A.

G. A. Candela, D. Chandler-Horowitz, J. F. Marchiando, D. B. Novotny, B. J. Belzer, M. C. Croarkin, Standard Reference Materials: Preparation and Certification of SRM-2530, Ellipsometric Parameters and Derived Thickness and Refractive Index of a Silicon Dioxide Layer on Silicon, NIST Spec. Publ. (National Institute of Standards and Technology, Gaithersburg, Md., 1988), 260–109.

Carniglia, C. K.

Case, W. E.

Cerva, H.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Chandler-Horowitz, D.

G. A. Candela, D. Chandler-Horowitz, J. F. Marchiando, D. B. Novotny, B. J. Belzer, M. C. Croarkin, Standard Reference Materials: Preparation and Certification of SRM-2530, Ellipsometric Parameters and Derived Thickness and Refractive Index of a Silicon Dioxide Layer on Silicon, NIST Spec. Publ. (National Institute of Standards and Technology, Gaithersburg, Md., 1988), 260–109.

Croarkin, M. C.

G. A. Candela, D. Chandler-Horowitz, J. F. Marchiando, D. B. Novotny, B. J. Belzer, M. C. Croarkin, Standard Reference Materials: Preparation and Certification of SRM-2530, Ellipsometric Parameters and Derived Thickness and Refractive Index of a Silicon Dioxide Layer on Silicon, NIST Spec. Publ. (National Institute of Standards and Technology, Gaithersburg, Md., 1988), 260–109.

Cullis, A.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

de Sande, J.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Dell’oca, C. J.

C. J. Dell’oca, “Properties and anodization of evaporated aluminum films studied by ellipsometry,” Thin Solid Films 26, 371–380 (1975).
[CrossRef]

Depas, M.

D. Tonova, M. Depas, J. Vanhellemont, “Interpretation of spectroscopic ellipsometry measurements of ultrathin dielectric layers on silicon: impact of accuracy of the silicon optical constants,” Thin Solid Films 288, 64–68 (1996).
[CrossRef]

Dinges, H.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Dobrowolski, J. A.

Gibson, U. J.

Hallais, J.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Hart, T. Tuttle

Hien, N. C.

Ho, F. C.

Hodgkin, V. A.

Jellison, P.

Kim, S. Y.

Klapp, W. P.

Knausenberger, W. H.

Kochles, R. B.

J. R. Zeidler, R. B. Kochles, N. M. Bashara, “Sensitivity of ellipsometric parameters to angle-of-incidence variations,” Appl. Opt. 13, 8, 1938–1945 (1974).
[CrossRef]

Lizlov, N. Y.

V. I. Psenicin, M. I. Abaev, N. Y. Lizlov, Ellipsometry in Physicochemical Investigations (Chimia, Leningrad, 1986) (in Russian).

Lowndes, D. H.

Lukes, F.

I. Ohlidal, F. Lukes, “Analysis of semiconductor surfaces with very thin native oxide layers by combined immersion and multiple angle of incidence ellipsometry,” Appl. Surf. Sci. 35, 259–273 (1988–89).
[CrossRef]

F. Lukes, “Temperature dependence of ellipsometric parameters of silicon,” Phys. Status Solidi A 102, 803–814 (1987).
[CrossRef]

F. Lukes, “Ellipsometry of silicon with natural surface film at 632.8 nm,” Phys. Status Solidi A 93, 223–230 (1986).
[CrossRef]

Lutov, L.

S. C. Russev, L. Vassilev, V. Vulchev, L. Lutov, Tz. Argirov, “Growth of thin Ag2S films on silver layers: in situ ellipsometric and conductivity studies,” J. Phys. Condens. Matter 6, 6237–6244 (1994).
[CrossRef]

Macleod, H. A.

Maes, H. E.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Marchiando, J. F.

G. A. Candela, D. Chandler-Horowitz, J. F. Marchiando, D. B. Novotny, B. J. Belzer, M. C. Croarkin, Standard Reference Materials: Preparation and Certification of SRM-2530, Ellipsometric Parameters and Derived Thickness and Refractive Index of a Silicon Dioxide Layer on Silicon, NIST Spec. Publ. (National Institute of Standards and Technology, Gaithersburg, Md., 1988), 260–109.

Nayar, V.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Novotny, D. B.

G. A. Candela, D. Chandler-Horowitz, J. F. Marchiando, D. B. Novotny, B. J. Belzer, M. C. Croarkin, Standard Reference Materials: Preparation and Certification of SRM-2530, Ellipsometric Parameters and Derived Thickness and Refractive Index of a Silicon Dioxide Layer on Silicon, NIST Spec. Publ. (National Institute of Standards and Technology, Gaithersburg, Md., 1988), 260–109.

Ohlidal, I.

I. Ohlidal, F. Lukes, “Analysis of semiconductor surfaces with very thin native oxide layers by combined immersion and multiple angle of incidence ellipsometry,” Appl. Surf. Sci. 35, 259–273 (1988–89).
[CrossRef]

Parvis, M. K.

Pelletier, E.

Pickering, C.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Psenicin, V. I.

V. I. Psenicin, M. I. Abaev, N. Y. Lizlov, Ellipsometry in Physicochemical Investigations (Chimia, Leningrad, 1986) (in Russian).

Quinn, D. M.

Rjanov, A. V.

A. V. Rjanov, Principles of Ellipsometry (Nauka, Siberian Branch, Novosibirsk, Russia1979) (in Russian).

Russev, S. C.

S. C. Russev, L. Vassilev, V. Vulchev, L. Lutov, Tz. Argirov, “Growth of thin Ag2S films on silver layers: in situ ellipsometric and conductivity studies,” J. Phys. Condens. Matter 6, 6237–6244 (1994).
[CrossRef]

Salieri, P.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Schaekers, M.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

So, S. S.

Stehle, J. L.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Strome, D. H.

Studna, A.

D. Aspnes, A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Swenson, R.

Temple, P. A.

Thonn, T. F.

Tonova, D.

D. Tonova, M. Depas, J. Vanhellemont, “Interpretation of spectroscopic ellipsometry measurements of ultrathin dielectric layers on silicon: impact of accuracy of the silicon optical constants,” Thin Solid Films 288, 64–68 (1996).
[CrossRef]

van der Meulen, J.

Van Landuyt, J.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Vanhellemont, J.

D. Tonova, M. Depas, J. Vanhellemont, “Interpretation of spectroscopic ellipsometry measurements of ultrathin dielectric layers on silicon: impact of accuracy of the silicon optical constants,” Thin Solid Films 288, 64–68 (1996).
[CrossRef]

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Vassilev, L.

S. C. Russev, L. Vassilev, V. Vulchev, L. Lutov, Tz. Argirov, “Growth of thin Ag2S films on silver layers: in situ ellipsometric and conductivity studies,” J. Phys. Condens. Matter 6, 6237–6244 (1994).
[CrossRef]

Vedam, K.

Vulchev, V.

S. C. Russev, L. Vassilev, V. Vulchev, L. Lutov, Tz. Argirov, “Growth of thin Ag2S films on silver layers: in situ ellipsometric and conductivity studies,” J. Phys. Condens. Matter 6, 6237–6244 (1994).
[CrossRef]

Walker, C.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Werner, H.

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

Yasuda, T.

Zeidler, J. R.

J. R. Zeidler, R. B. Kochles, N. M. Bashara, “Sensitivity of ellipsometric parameters to angle-of-incidence variations,” Appl. Opt. 13, 8, 1938–1945 (1974).
[CrossRef]

Appl. Opt. (4)

Appl. Surf. Sci. (2)

J. Vanhellemont, H. E. Maes, M. Schaekers, A. Armigliato, H. Cerva, A. Cullis, J. de Sande, H. Dinges, J. Hallais, V. Nayar, C. Pickering, J. L. Stehle, J. Van Landuyt, C. Walker, H. Werner, P. Salieri, “Round robin investigations of silicon oxide on silicon reference materials for ellipsometry,” Appl. Surf. Sci. 63, 45–51 (1993).
[CrossRef]

I. Ohlidal, F. Lukes, “Analysis of semiconductor surfaces with very thin native oxide layers by combined immersion and multiple angle of incidence ellipsometry,” Appl. Surf. Sci. 35, 259–273 (1988–89).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

S. Y. Kim, K. Vedam, “Analytic solution of the pseudo-Brewster angle,” J. Opt. Soc. Am. A 3, 1772–1773 (1986).
[CrossRef]

D. Beaglehole, “Isoellipsometric-parameter curves for layers on silicon,” J. Opt. Soc. Am. A 8, 2, 311–313 (1991).
[CrossRef]

J. Phys. Condens. Matter (1)

S. C. Russev, L. Vassilev, V. Vulchev, L. Lutov, Tz. Argirov, “Growth of thin Ag2S films on silver layers: in situ ellipsometric and conductivity studies,” J. Phys. Condens. Matter 6, 6237–6244 (1994).
[CrossRef]

Phys. Rev. B (1)

D. Aspnes, A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Phys. Status Solidi A (2)

F. Lukes, “Ellipsometry of silicon with natural surface film at 632.8 nm,” Phys. Status Solidi A 93, 223–230 (1986).
[CrossRef]

F. Lukes, “Temperature dependence of ellipsometric parameters of silicon,” Phys. Status Solidi A 102, 803–814 (1987).
[CrossRef]

Thin Solid Films (2)

C. J. Dell’oca, “Properties and anodization of evaporated aluminum films studied by ellipsometry,” Thin Solid Films 26, 371–380 (1975).
[CrossRef]

D. Tonova, M. Depas, J. Vanhellemont, “Interpretation of spectroscopic ellipsometry measurements of ultrathin dielectric layers on silicon: impact of accuracy of the silicon optical constants,” Thin Solid Films 288, 64–68 (1996).
[CrossRef]

Other (6)

E. Palik, ed., Handbook of Optical Constant of Solids (Academic, San Diego, Calif., 1985), p. 107.

A. V. Rjanov, Principles of Ellipsometry (Nauka, Siberian Branch, Novosibirsk, Russia1979) (in Russian).

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

V. I. Psenicin, M. I. Abaev, N. Y. Lizlov, Ellipsometry in Physicochemical Investigations (Chimia, Leningrad, 1986) (in Russian).

G. A. Candela, D. Chandler-Horowitz, J. F. Marchiando, D. B. Novotny, B. J. Belzer, M. C. Croarkin, Standard Reference Materials: Preparation and Certification of SRM-2530, Ellipsometric Parameters and Derived Thickness and Refractive Index of a Silicon Dioxide Layer on Silicon, NIST Spec. Publ. (National Institute of Standards and Technology, Gaithersburg, Md., 1988), 260–109.

Standard Reference Material 2530 Series, available from the National Institute of Standards and Technology, Gaithersburg, Md. 20899.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Parameters used to characterize an AI-insensitive Ψ standard. The data shown are for the SiO2–Si structure with a silicon oxide layer thickness of 906 nm. See details in the text.

Fig. 2
Fig. 2

Rhodium and platinum can be used as AI-insensitive Ψ standards at one working angle φ w = 78.4°. The working interval Δφ w (shaded area) is smaller than separate materials Δφ m , but still adequate for standard purposes.

Fig. 3
Fig. 3

Plot of Ψ m as a function of φ m for several metals. The bars indicate Δφ m at ΔΨ m = 0.01°.

Fig. 4
Fig. 4

Plots of Δφ m , Ψ m , and φ m at minimum Ψ, as a function of the Sc2O3 (n 1 = 1.81) layer thickness on top of a fused-silica substrate (n 2 = 1.456). The inset shows Ψ(φ) dependence for layer thickness of 960 nm, where a large value of Δφ m is observed.

Fig. 5
Fig. 5

Ψ m as a function of φ m plot for Sc2O3 layer on fused-silica substrate. The parameter is the layer thickness, increasing from the lower left-hand point (bare surface) to the lower right-hand point, and vice versa. The enlarged part of one of the curves shows one possible set of thicknesses, suitable for AI-insensitive standard. The bars indicate Δφ m .

Fig. 6
Fig. 6

Ψ m as a function of φ m for different metal layers on fused-silica substrate. Starting from the lower left-hand point at Ψ m = 0° and φ m = 55.52° (Brewster angle for the bare fused-silica substrate), the dots on the curves indicate 1-nm metal layer thickness increment.

Fig. 7
Fig. 7

Plots of Δφ m , Ψ m , and φ m at minimum Ψ, as a function of the Al2O3 (n 1 = 1.65) layer thickness on top of the aluminum substrate (n 2 = 1.3, k 2 = 6.5).

Fig. 8
Fig. 8

Ψ m –φ m plot for the Al2O3–Al system. The curves below Ψ m = 45° belong to the minimum Ψ family; those above, to the maximum Ψ.

Fig. 9
Fig. 9

Variation of Ψ with AI for the Al2O3–Al system close to the thickness of the oxide layer, giving small Ψ variation in the entire 0–90° AI range.

Fig. 10
Fig. 10

Ψ m –φ m plot for the SiO2–Si system for minimum Ψ. Figures indicate the oxide layer thickness in nanometers. The marked region is enlarged in Fig. 12.

Fig. 11
Fig. 11

Ψ m –φ m plot for the SiO2–Si system for maximum Ψ. The figures indicate the oxide layer thickness in nanometers.

Fig. 12
Fig. 12

SiO2–Si system. Part of the Ψ m –φ m curve (minimum Ψ) near a working AI of φ w = 80°, useful for an AI-insensitive Ψ standards set. The bars indicate Δφ m at different thicknesses, and the numbers on the curve mark the corresponding oxide layer thickness in nanometers.

Fig. 13
Fig. 13

Ψ m –φ m curve for the SiO2–Si system near a working AI of φ w = 78°. The bars indicate Δφ m at different thicknesses, and the numbers on the curve mark the corresponding oxide layer thickness in nanometers. The arrow indicates the point for which the temperature dependence is shown above. The left-hand top figure shows Ψ(φ) around the minimum point for three different temperatures. The right-hand top figure shows Ψ(T) dependence at a fixed AI.

Fig. 14
Fig. 14

SiO2–Si system. Part of the Ψ m –φ m (maximum Ψ) curves around the working AI φ w = 80°. The bars indicate Δφ m at different thicknesses, and the numbers on the curve mark the corresponding oxide layer thickness in nanometers.

Tables (1)

Tables Icon

Table 1 Characterizing Parameters at Minimum AI Sensitivity (Ψ m , φ m )a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d Ψ / d φ = 0
Δ Ψ m = max φ Δ φ m | Ψ φ - Ψ m | ,
Δ Ψ = Ψ - Ψ m = Ψ φ   Δ φ + 1 2 2 Ψ φ 2 Δ φ 2 + ,
Δ φ m = 2 2 Δ Ψ m 2 Ψ φ 2 1 / 2 .
tan   φ B = n 1 / n 0 .
Δ Ψ = Ψ n   Δ n + Ψ k   Δ k ,
Δ φ m = φ m n   Δ n + φ m k   Δ k .
Δ Ψ = Ψ n n T   Δ T + Ψ k k T   Δ T ,
Δ φ m = φ m n n T   Δ T + φ m k k T   Δ T .
φ m = 56.438 ° ,   Ψ m = 6.834 ° ,   Δ φ m = 2.86 ° .

Metrics