Abstract

A fiber-coupled, compact laser wavemeter based on a modified Wollaston prism has been constructed and evaluated. The path difference between orthogonal polarization states of the input light varies smoothly across the aperture of the prism forming an interferogram in the spatial domain that is recorded with a CCD detector array. A Fourier transform of this interferogram gives the spectral distribution of the incident light. Alternatively, for a narrow-linewidth source a fringe period measurement technique is used to obtain precision measurement of the center wavelength. Using 752 interferogram data points we obtain a wavelength precision of 1 part in 106. The elimination of moving parts from the design makes the recorded interferogram inherently stable.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Snyder, T. W. Hänsch, “Laser wavemeters,” in Topics in Applied Physics: Dye Lasers, 3rd ed., F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1990), Vol. 1, pp. 201–219.
    [CrossRef]
  2. T. Okamoto, S. Kawata, S. Minami, “A photodiode array Fourier transform spectrometer based on a birefringent interferometer,” Appl. Spectrosc. 40, 691–695 (1986).
    [CrossRef]
  3. M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse Fourier transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994).
    [CrossRef] [PubMed]
  4. M. J. Padgett, A. R. Harvey, “A static Fourier transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
    [CrossRef]
  5. M. Françon, S. Mallick, Polarization Interferometers (Wiley-Interscience, London, 1971).
  6. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
    [CrossRef]
  7. J. J. Snyder, “Algorithm for fast digital analysis of interference fringes,” Appl. Opt. 19, 1223–1225 (1980).
    [CrossRef] [PubMed]
  8. 1100 series RS-170 monochrome camera, Cohu, Inc., Electronics Division, 5755 Kearny Villa Road, San Diego, Calif.
  9. J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, M. J. Padgett, “Design of a static Fourier-transform spectrometer with increased field of view,” Appl. Opt. 35, 6698–6702 (1996).
    [CrossRef] [PubMed]
  10. Halbo Optics, 83 Haltwhistle Road, Chelmsford, England, Product Guide 3.
  11. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 2, p. 22.
  12. M.-L. Junttila, B. Ståhlberg, “Laser wavelength measurement with a Fourier transform wavemeter,” Appl. Opt. 29, 3510–3516 (1990).
    [CrossRef] [PubMed]
  13. X. Q. Jiang, J. Kemp, Y. N. Ning, A. W. Palmer, K. T. V. Grattan, “High-accuracy wavelength-change measurement system based on a Wollaston interferometer, incorporating a self-referencing scheme,” Appl. Opt. 36, 4907–4912 (1997).
    [CrossRef] [PubMed]

1997

1996

J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, M. J. Padgett, “Design of a static Fourier-transform spectrometer with increased field of view,” Appl. Opt. 35, 6698–6702 (1996).
[CrossRef] [PubMed]

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

1995

M. J. Padgett, A. R. Harvey, “A static Fourier transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

1994

1990

1986

1980

Antoni, M.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 2, p. 22.

Courtial, J.

J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, M. J. Padgett, “Design of a static Fourier-transform spectrometer with increased field of view,” Appl. Opt. 35, 6698–6702 (1996).
[CrossRef] [PubMed]

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Duncan, A. J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse Fourier transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994).
[CrossRef] [PubMed]

Françon, M.

M. Françon, S. Mallick, Polarization Interferometers (Wiley-Interscience, London, 1971).

Grattan, K. T. V.

Hänsch, T. W.

J. J. Snyder, T. W. Hänsch, “Laser wavemeters,” in Topics in Applied Physics: Dye Lasers, 3rd ed., F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1990), Vol. 1, pp. 201–219.
[CrossRef]

Harvey, A. R.

Jiang, X. Q.

Junttila, M.-L.

Kawata, S.

Kemp, J.

Mallick, S.

M. Françon, S. Mallick, Polarization Interferometers (Wiley-Interscience, London, 1971).

Minami, S.

Ning, Y. N.

Okamoto, T.

Padgett, M. J.

J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, M. J. Padgett, “Design of a static Fourier-transform spectrometer with increased field of view,” Appl. Opt. 35, 6698–6702 (1996).
[CrossRef] [PubMed]

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

M. J. Padgett, A. R. Harvey, “A static Fourier transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse Fourier transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994).
[CrossRef] [PubMed]

Palmer, A. W.

Patterson, B. A.

J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, M. J. Padgett, “Design of a static Fourier-transform spectrometer with increased field of view,” Appl. Opt. 35, 6698–6702 (1996).
[CrossRef] [PubMed]

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Sibbett, W.

Snyder, J. J.

J. J. Snyder, “Algorithm for fast digital analysis of interference fringes,” Appl. Opt. 19, 1223–1225 (1980).
[CrossRef] [PubMed]

J. J. Snyder, T. W. Hänsch, “Laser wavemeters,” in Topics in Applied Physics: Dye Lasers, 3rd ed., F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1990), Vol. 1, pp. 201–219.
[CrossRef]

Ståhlberg, B.

Appl. Opt.

Appl. Spectrosc.

Opt. Commun.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Rev. Sci. Instrum.

M. J. Padgett, A. R. Harvey, “A static Fourier transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

Other

M. Françon, S. Mallick, Polarization Interferometers (Wiley-Interscience, London, 1971).

J. J. Snyder, T. W. Hänsch, “Laser wavemeters,” in Topics in Applied Physics: Dye Lasers, 3rd ed., F. P. Schäfer, ed. (Springer-Verlag, Berlin, 1990), Vol. 1, pp. 201–219.
[CrossRef]

Halbo Optics, 83 Haltwhistle Road, Chelmsford, England, Product Guide 3.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 2, p. 22.

1100 series RS-170 monochrome camera, Cohu, Inc., Electronics Division, 5755 Kearny Villa Road, San Diego, Calif.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical layout of the wavemeter/spectrometer.

Fig. 2
Fig. 2

Fiber-coupled, ultracompact SFTS and wavemeter interfaced to a laptop computer.

Fig. 3
Fig. 3

Sample results when the instrument is used as a spectrometer while illuminating with He–Ne and diode lasers. (a) A section of the two-dimensional fringes as recorded by the detector array, (b) the corresponding one-dimensional interferogram, (c) the Fourier-transformed result.

Fig. 4
Fig. 4

Sample results from the wavemeter. Wavelength measurement was of a commercial He–Ne laser over (a) a 12-h period that demonstrated a stability of the instrument of approximately 2 parts in 105, and (b) a short-term recording over 60 s that demonstrated an accuracy and stability of approximately 1 part in 106.

Fig. 5
Fig. 5

Sample results from the wavemeter for a commercial laser diode operating at a nominal wavelength of 670 nm. (a) Recorded over a 12-h period and shows the wavelength drift of the diode as the ambient room temperature changes. (b) Recorded over a period of 10-min while the diode was subjected to forced heating and cooling. Section (I) is a period of forced rapid cooling; in section (II) the diode heated up naturally followed in section (III) by a period of forced rapid heating. The diode was allowed to cool unaided in section (IV) until it was rapidly cooled again in section (V), and finally allowed to heat up again to its preferred operating temperature in section (VI).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ = 2 d Δ n λ tan   ϑ ,
S = λ 2 Δ n λ tan   ϑ = C λ λ .
λ = C S S .

Metrics