Abstract

A new mid-IR heterodyne spectrometer, which is intended to be applied for atmospheric and astrophysical studies, is presented. The spectrometer uses a frequency-stabilized tunable diode laser as a local oscillator. Owing to the low output power of available single-mode diode lasers, a newly developed confocal-ring resonator, the diplexer, is used to superimpose the source signal efficiently with that of the local oscillator. Additionally, the diplexer serves as an optical filter that establishes controlled optical feedback between the laser diode and the detector, which allows stable laser operation with linewidths of the order of 1 MHz. The heterodyne signal from the HgCdTe detector is analyzed by means of a 1.4-GHz acousto-optical spectrometer. With this setup we find system temperatures as low as 4400 K (double sideband), that is, approximately a factor of 6 of the quantum limit.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Abbas, M. J. Mumma, T. Kostiuk, D. Buhl, “Sensitivity limits of an infrared heterodyne spectrometer for astrophysical applications,” Appl. Opt. 15, 427–436 (1976).
    [CrossRef] [PubMed]
  2. T. Kostiuk, M. J. Mumma, J. J. Hillman, D. Buhl, L. W. Brown, J. L. Faris, D. L. Spears, “NH3 spectral line measurements on earth and jupiter using a 10 μm superheterodyne receiver,” Infrared Phys. Technol. 17, 431–439 (1977).
    [CrossRef]
  3. D. Glenar, T. Kostiuk, D. E. Jennings, D. Buhl, M. J. Mumma, “Tunable diode-laser heterodyne spectrometer for remote observations near 8 μm,” Appl. Opt. 21, 253–259 (1982).
    [CrossRef] [PubMed]
  4. T. Kostiuk, M. J. Mumma, “Remote sensing by IR heterodyne spectroscopy” Appl. Opt. 22, 2644–2654 (1983).
    [CrossRef] [PubMed]
  5. H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).
  6. H. Fukunishi, S. Okano, M. Taguchi, T. Ohnuma, “Laser heterodyne spectrometer using a liquid nitrogen cooled tunable diode laser for remote measurements of atmospheric O3 and N2O,” Appl. Opt. 29, 2722–2728 (1990).
    [CrossRef]
  7. A. Delahaigue, D. Courtois, C. Thiébeaux, S. Kalité, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
    [CrossRef]
  8. R. Schieder, “High resolution diode laser and heterodyne spectroscopy with applications toward remote sensing,” Infrared Phys. Technol. 35, 477–486 (1994).
    [CrossRef]
  9. C. T. McElroy, A. Glodman, P. F. Fogal, D. G. Murcray, “Heterodyne spectrophotometry of ozone in the 9.6 μm band using a tunable diode laser,” J. Geophys. Res. 95, 5567–5575 (1990).
    [CrossRef]
  10. B. Vowinkel, P. Müller, “Cryogenic L-band HEMT-amplifier with a noise figure of less than 0.1 dB.,” in MIOP Conference Proceedings, (Network GmbH, Hagenburg, Germany, 1990), pp. 653–658.
  11. N. Anselm, K. M. T. Yamada, R. Schieder, G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1-0) band of CO with N2 and argon,” J. Mol. Spectrosc. 161, 284–296 (1993).
    [CrossRef]
  12. M. Mürtz, M. Schaefer, M. Schneider, J. S. Wells, W. Urban, U. Schiessl, M. Tacke, “Stabilization of 3.3 and 5.1 μm lead-salt diode lasers by optical feedback,” Opt. Commun. 94, 551–556 (1992).
    [CrossRef]
  13. C. H. Henry, R. F. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986).
    [CrossRef]
  14. G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. 20, 468–471 (1984).
    [CrossRef]
  15. C. N. Harward, J. M. Hoell, “Optical feedback effects on the performance of Pb1-xSnxSe semiconductor lasers,” Appl. Opt. 18, 3978–3983 (1979).
    [CrossRef] [PubMed]
  16. R. Schieder, V. Tolls, G. Winnewisser, “The cologne acousto optical spectrometer,” Exp. Astron. 1, 101–121 (1989).
    [CrossRef]
  17. V. Tolls, R. Schieder, G. Winnewisser, “New cologne acousto optical spectrometer projects,” in Proceedings of the 29th Liège International Astrophysical Colloquium: From Ground-Based to Space-Borne Sub-mm Astronomy (1990), pp. 299–305.
  18. A. R. Kerr, M. J. Feldman, S. K. Pan, “Receiver noise temperature, the quantum noise limit, and the role of the zero-point fluctuations,” in Proceedings of the Eighth International Symposium on Space Terahertz Technology (1997), pp. 101–111. Originally printed as Electronics Division Internal Report No. 304 (National Radio Astronomy Observatory, Charlottesville, Va. 22903, 1996).
  19. J. D. Kraus, Radio Astronomy,2nd ed. (Cygnus-Quasar, Powell, Ohio, 1986).
  20. K. Rohfls, T. L. Wilson, Tools of Radio Astronomy (Springer, New York, 1996).
  21. O. Hachenberg, B. Vowinkel, Technische Grundlagen der Radioastronomie (BI Wissenschaftsverlag, Bibliographisches Institut, Manheim, Germany, 1982).
  22. T. G. Blaney, “Signal-to-noise ratio and other characteristics of heterodyne radiation receivers,” Space Sci. Rev. 17, 691–702 (1975).
    [CrossRef]
  23. A. I. Harris, “Coherent and incoherent detection at submillimeter and far-infrared wavelengths,” in Coherent Detection at Millimeter Wavelengths and their Applications,P. Encrenaz, C. Laurent, S. Gulkis, E. Kollberg, G. Winnewisser, eds., Les Houches Series (Nova Science, New York, 1991), pp. 7–34.

1996 (1)

A. Delahaigue, D. Courtois, C. Thiébeaux, S. Kalité, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

1994 (1)

R. Schieder, “High resolution diode laser and heterodyne spectroscopy with applications toward remote sensing,” Infrared Phys. Technol. 35, 477–486 (1994).
[CrossRef]

1993 (1)

N. Anselm, K. M. T. Yamada, R. Schieder, G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1-0) band of CO with N2 and argon,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

1992 (1)

M. Mürtz, M. Schaefer, M. Schneider, J. S. Wells, W. Urban, U. Schiessl, M. Tacke, “Stabilization of 3.3 and 5.1 μm lead-salt diode lasers by optical feedback,” Opt. Commun. 94, 551–556 (1992).
[CrossRef]

1990 (2)

C. T. McElroy, A. Glodman, P. F. Fogal, D. G. Murcray, “Heterodyne spectrophotometry of ozone in the 9.6 μm band using a tunable diode laser,” J. Geophys. Res. 95, 5567–5575 (1990).
[CrossRef]

H. Fukunishi, S. Okano, M. Taguchi, T. Ohnuma, “Laser heterodyne spectrometer using a liquid nitrogen cooled tunable diode laser for remote measurements of atmospheric O3 and N2O,” Appl. Opt. 29, 2722–2728 (1990).
[CrossRef]

1989 (1)

R. Schieder, V. Tolls, G. Winnewisser, “The cologne acousto optical spectrometer,” Exp. Astron. 1, 101–121 (1989).
[CrossRef]

1986 (1)

C. H. Henry, R. F. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986).
[CrossRef]

1984 (1)

G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. 20, 468–471 (1984).
[CrossRef]

1983 (2)

T. Kostiuk, M. J. Mumma, “Remote sensing by IR heterodyne spectroscopy” Appl. Opt. 22, 2644–2654 (1983).
[CrossRef] [PubMed]

H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).

1982 (1)

1979 (1)

1977 (1)

T. Kostiuk, M. J. Mumma, J. J. Hillman, D. Buhl, L. W. Brown, J. L. Faris, D. L. Spears, “NH3 spectral line measurements on earth and jupiter using a 10 μm superheterodyne receiver,” Infrared Phys. Technol. 17, 431–439 (1977).
[CrossRef]

1976 (1)

1975 (1)

T. G. Blaney, “Signal-to-noise ratio and other characteristics of heterodyne radiation receivers,” Space Sci. Rev. 17, 691–702 (1975).
[CrossRef]

Abbas, M. M.

Agrawal, G. P.

G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. 20, 468–471 (1984).
[CrossRef]

Anselm, N.

N. Anselm, K. M. T. Yamada, R. Schieder, G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1-0) band of CO with N2 and argon,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

Blaney, T. G.

T. G. Blaney, “Signal-to-noise ratio and other characteristics of heterodyne radiation receivers,” Space Sci. Rev. 17, 691–702 (1975).
[CrossRef]

Brown, L. W.

T. Kostiuk, M. J. Mumma, J. J. Hillman, D. Buhl, L. W. Brown, J. L. Faris, D. L. Spears, “NH3 spectral line measurements on earth and jupiter using a 10 μm superheterodyne receiver,” Infrared Phys. Technol. 17, 431–439 (1977).
[CrossRef]

Buhl, D.

Courtois, D.

A. Delahaigue, D. Courtois, C. Thiébeaux, S. Kalité, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

Delahaigue, A.

A. Delahaigue, D. Courtois, C. Thiébeaux, S. Kalité, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

Faris, J. L.

T. Kostiuk, M. J. Mumma, J. J. Hillman, D. Buhl, L. W. Brown, J. L. Faris, D. L. Spears, “NH3 spectral line measurements on earth and jupiter using a 10 μm superheterodyne receiver,” Infrared Phys. Technol. 17, 431–439 (1977).
[CrossRef]

Feldman, M. J.

A. R. Kerr, M. J. Feldman, S. K. Pan, “Receiver noise temperature, the quantum noise limit, and the role of the zero-point fluctuations,” in Proceedings of the Eighth International Symposium on Space Terahertz Technology (1997), pp. 101–111. Originally printed as Electronics Division Internal Report No. 304 (National Radio Astronomy Observatory, Charlottesville, Va. 22903, 1996).

Fogal, P. F.

C. T. McElroy, A. Glodman, P. F. Fogal, D. G. Murcray, “Heterodyne spectrophotometry of ozone in the 9.6 μm band using a tunable diode laser,” J. Geophys. Res. 95, 5567–5575 (1990).
[CrossRef]

Fukunishi, H.

Glenar, D.

Glodman, A.

C. T. McElroy, A. Glodman, P. F. Fogal, D. G. Murcray, “Heterodyne spectrophotometry of ozone in the 9.6 μm band using a tunable diode laser,” J. Geophys. Res. 95, 5567–5575 (1990).
[CrossRef]

Hachenberg, O.

O. Hachenberg, B. Vowinkel, Technische Grundlagen der Radioastronomie (BI Wissenschaftsverlag, Bibliographisches Institut, Manheim, Germany, 1982).

Harris, A. I.

A. I. Harris, “Coherent and incoherent detection at submillimeter and far-infrared wavelengths,” in Coherent Detection at Millimeter Wavelengths and their Applications,P. Encrenaz, C. Laurent, S. Gulkis, E. Kollberg, G. Winnewisser, eds., Les Houches Series (Nova Science, New York, 1991), pp. 7–34.

Harward, C. N.

Henry, C. H.

C. H. Henry, R. F. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986).
[CrossRef]

Hillman, J. J.

T. Kostiuk, M. J. Mumma, J. J. Hillman, D. Buhl, L. W. Brown, J. L. Faris, D. L. Spears, “NH3 spectral line measurements on earth and jupiter using a 10 μm superheterodyne receiver,” Infrared Phys. Technol. 17, 431–439 (1977).
[CrossRef]

Hoell, J. M.

Jennings, D. E.

Kalité, S.

A. Delahaigue, D. Courtois, C. Thiébeaux, S. Kalité, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

Käufl, H. U.

H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).

Kazarinov, R. F.

C. H. Henry, R. F. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986).
[CrossRef]

Kerr, A. R.

A. R. Kerr, M. J. Feldman, S. K. Pan, “Receiver noise temperature, the quantum noise limit, and the role of the zero-point fluctuations,” in Proceedings of the Eighth International Symposium on Space Terahertz Technology (1997), pp. 101–111. Originally printed as Electronics Division Internal Report No. 304 (National Radio Astronomy Observatory, Charlottesville, Va. 22903, 1996).

Kostiuk, T.

Kraus, J. D.

J. D. Kraus, Radio Astronomy,2nd ed. (Cygnus-Quasar, Powell, Ohio, 1986).

McElroy, C. T.

C. T. McElroy, A. Glodman, P. F. Fogal, D. G. Murcray, “Heterodyne spectrophotometry of ozone in the 9.6 μm band using a tunable diode laser,” J. Geophys. Res. 95, 5567–5575 (1990).
[CrossRef]

Müller, P.

B. Vowinkel, P. Müller, “Cryogenic L-band HEMT-amplifier with a noise figure of less than 0.1 dB.,” in MIOP Conference Proceedings, (Network GmbH, Hagenburg, Germany, 1990), pp. 653–658.

Mumma, M. J.

Murcray, D. G.

C. T. McElroy, A. Glodman, P. F. Fogal, D. G. Murcray, “Heterodyne spectrophotometry of ozone in the 9.6 μm band using a tunable diode laser,” J. Geophys. Res. 95, 5567–5575 (1990).
[CrossRef]

Mürtz, M.

M. Mürtz, M. Schaefer, M. Schneider, J. S. Wells, W. Urban, U. Schiessl, M. Tacke, “Stabilization of 3.3 and 5.1 μm lead-salt diode lasers by optical feedback,” Opt. Commun. 94, 551–556 (1992).
[CrossRef]

Ohnuma, T.

Okano, S.

Pan, S. K.

A. R. Kerr, M. J. Feldman, S. K. Pan, “Receiver noise temperature, the quantum noise limit, and the role of the zero-point fluctuations,” in Proceedings of the Eighth International Symposium on Space Terahertz Technology (1997), pp. 101–111. Originally printed as Electronics Division Internal Report No. 304 (National Radio Astronomy Observatory, Charlottesville, Va. 22903, 1996).

Parvitte, B.

A. Delahaigue, D. Courtois, C. Thiébeaux, S. Kalité, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

Rohfls, K.

K. Rohfls, T. L. Wilson, Tools of Radio Astronomy (Springer, New York, 1996).

Rothermel, H.

H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).

Schaefer, M.

M. Mürtz, M. Schaefer, M. Schneider, J. S. Wells, W. Urban, U. Schiessl, M. Tacke, “Stabilization of 3.3 and 5.1 μm lead-salt diode lasers by optical feedback,” Opt. Commun. 94, 551–556 (1992).
[CrossRef]

Schieder, R.

R. Schieder, “High resolution diode laser and heterodyne spectroscopy with applications toward remote sensing,” Infrared Phys. Technol. 35, 477–486 (1994).
[CrossRef]

N. Anselm, K. M. T. Yamada, R. Schieder, G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1-0) band of CO with N2 and argon,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

R. Schieder, V. Tolls, G. Winnewisser, “The cologne acousto optical spectrometer,” Exp. Astron. 1, 101–121 (1989).
[CrossRef]

V. Tolls, R. Schieder, G. Winnewisser, “New cologne acousto optical spectrometer projects,” in Proceedings of the 29th Liège International Astrophysical Colloquium: From Ground-Based to Space-Borne Sub-mm Astronomy (1990), pp. 299–305.

Schiessl, U.

M. Mürtz, M. Schaefer, M. Schneider, J. S. Wells, W. Urban, U. Schiessl, M. Tacke, “Stabilization of 3.3 and 5.1 μm lead-salt diode lasers by optical feedback,” Opt. Commun. 94, 551–556 (1992).
[CrossRef]

Schneider, M.

M. Mürtz, M. Schaefer, M. Schneider, J. S. Wells, W. Urban, U. Schiessl, M. Tacke, “Stabilization of 3.3 and 5.1 μm lead-salt diode lasers by optical feedback,” Opt. Commun. 94, 551–556 (1992).
[CrossRef]

Spears, D. L.

T. Kostiuk, M. J. Mumma, J. J. Hillman, D. Buhl, L. W. Brown, J. L. Faris, D. L. Spears, “NH3 spectral line measurements on earth and jupiter using a 10 μm superheterodyne receiver,” Infrared Phys. Technol. 17, 431–439 (1977).
[CrossRef]

Tacke, M.

M. Mürtz, M. Schaefer, M. Schneider, J. S. Wells, W. Urban, U. Schiessl, M. Tacke, “Stabilization of 3.3 and 5.1 μm lead-salt diode lasers by optical feedback,” Opt. Commun. 94, 551–556 (1992).
[CrossRef]

Taguchi, M.

Thiébeaux, C.

A. Delahaigue, D. Courtois, C. Thiébeaux, S. Kalité, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

Tolls, V.

R. Schieder, V. Tolls, G. Winnewisser, “The cologne acousto optical spectrometer,” Exp. Astron. 1, 101–121 (1989).
[CrossRef]

V. Tolls, R. Schieder, G. Winnewisser, “New cologne acousto optical spectrometer projects,” in Proceedings of the 29th Liège International Astrophysical Colloquium: From Ground-Based to Space-Borne Sub-mm Astronomy (1990), pp. 299–305.

Urban, W.

M. Mürtz, M. Schaefer, M. Schneider, J. S. Wells, W. Urban, U. Schiessl, M. Tacke, “Stabilization of 3.3 and 5.1 μm lead-salt diode lasers by optical feedback,” Opt. Commun. 94, 551–556 (1992).
[CrossRef]

Vowinkel, B.

O. Hachenberg, B. Vowinkel, Technische Grundlagen der Radioastronomie (BI Wissenschaftsverlag, Bibliographisches Institut, Manheim, Germany, 1982).

B. Vowinkel, P. Müller, “Cryogenic L-band HEMT-amplifier with a noise figure of less than 0.1 dB.,” in MIOP Conference Proceedings, (Network GmbH, Hagenburg, Germany, 1990), pp. 653–658.

Wells, J. S.

M. Mürtz, M. Schaefer, M. Schneider, J. S. Wells, W. Urban, U. Schiessl, M. Tacke, “Stabilization of 3.3 and 5.1 μm lead-salt diode lasers by optical feedback,” Opt. Commun. 94, 551–556 (1992).
[CrossRef]

Wilson, T. L.

K. Rohfls, T. L. Wilson, Tools of Radio Astronomy (Springer, New York, 1996).

Winnewisser, G.

N. Anselm, K. M. T. Yamada, R. Schieder, G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1-0) band of CO with N2 and argon,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

R. Schieder, V. Tolls, G. Winnewisser, “The cologne acousto optical spectrometer,” Exp. Astron. 1, 101–121 (1989).
[CrossRef]

V. Tolls, R. Schieder, G. Winnewisser, “New cologne acousto optical spectrometer projects,” in Proceedings of the 29th Liège International Astrophysical Colloquium: From Ground-Based to Space-Borne Sub-mm Astronomy (1990), pp. 299–305.

Yamada, K. M. T.

N. Anselm, K. M. T. Yamada, R. Schieder, G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1-0) band of CO with N2 and argon,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

Yu, Y.

H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).

Appl. Opt. (5)

Astron. Astrophys. (1)

H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).

Exp. Astron. (1)

R. Schieder, V. Tolls, G. Winnewisser, “The cologne acousto optical spectrometer,” Exp. Astron. 1, 101–121 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. H. Henry, R. F. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986).
[CrossRef]

G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron. 20, 468–471 (1984).
[CrossRef]

Infrared Phys. Technol. (3)

T. Kostiuk, M. J. Mumma, J. J. Hillman, D. Buhl, L. W. Brown, J. L. Faris, D. L. Spears, “NH3 spectral line measurements on earth and jupiter using a 10 μm superheterodyne receiver,” Infrared Phys. Technol. 17, 431–439 (1977).
[CrossRef]

A. Delahaigue, D. Courtois, C. Thiébeaux, S. Kalité, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

R. Schieder, “High resolution diode laser and heterodyne spectroscopy with applications toward remote sensing,” Infrared Phys. Technol. 35, 477–486 (1994).
[CrossRef]

J. Geophys. Res. (1)

C. T. McElroy, A. Glodman, P. F. Fogal, D. G. Murcray, “Heterodyne spectrophotometry of ozone in the 9.6 μm band using a tunable diode laser,” J. Geophys. Res. 95, 5567–5575 (1990).
[CrossRef]

J. Mol. Spectrosc. (1)

N. Anselm, K. M. T. Yamada, R. Schieder, G. Winnewisser, “Measurements of foreign gas pressure shift and broadening effects in the (1-0) band of CO with N2 and argon,” J. Mol. Spectrosc. 161, 284–296 (1993).
[CrossRef]

Opt. Commun. (1)

M. Mürtz, M. Schaefer, M. Schneider, J. S. Wells, W. Urban, U. Schiessl, M. Tacke, “Stabilization of 3.3 and 5.1 μm lead-salt diode lasers by optical feedback,” Opt. Commun. 94, 551–556 (1992).
[CrossRef]

Space Sci. Rev. (1)

T. G. Blaney, “Signal-to-noise ratio and other characteristics of heterodyne radiation receivers,” Space Sci. Rev. 17, 691–702 (1975).
[CrossRef]

Other (7)

A. I. Harris, “Coherent and incoherent detection at submillimeter and far-infrared wavelengths,” in Coherent Detection at Millimeter Wavelengths and their Applications,P. Encrenaz, C. Laurent, S. Gulkis, E. Kollberg, G. Winnewisser, eds., Les Houches Series (Nova Science, New York, 1991), pp. 7–34.

V. Tolls, R. Schieder, G. Winnewisser, “New cologne acousto optical spectrometer projects,” in Proceedings of the 29th Liège International Astrophysical Colloquium: From Ground-Based to Space-Borne Sub-mm Astronomy (1990), pp. 299–305.

A. R. Kerr, M. J. Feldman, S. K. Pan, “Receiver noise temperature, the quantum noise limit, and the role of the zero-point fluctuations,” in Proceedings of the Eighth International Symposium on Space Terahertz Technology (1997), pp. 101–111. Originally printed as Electronics Division Internal Report No. 304 (National Radio Astronomy Observatory, Charlottesville, Va. 22903, 1996).

J. D. Kraus, Radio Astronomy,2nd ed. (Cygnus-Quasar, Powell, Ohio, 1986).

K. Rohfls, T. L. Wilson, Tools of Radio Astronomy (Springer, New York, 1996).

O. Hachenberg, B. Vowinkel, Technische Grundlagen der Radioastronomie (BI Wissenschaftsverlag, Bibliographisches Institut, Manheim, Germany, 1982).

B. Vowinkel, P. Müller, “Cryogenic L-band HEMT-amplifier with a noise figure of less than 0.1 dB.,” in MIOP Conference Proceedings, (Network GmbH, Hagenburg, Germany, 1990), pp. 653–658.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spectrometer setup.

Fig. 2
Fig. 2

Linewidth of the locked TDL measured as the beat signal with a CO2 laser as seen with the AOS at 1-MHz resolution.

Fig. 3
Fig. 3

Diplexer scheme used to superimpose LO and signal power in a ratio of approximately 60/90.

Fig. 4
Fig. 4

Transmission and reflection of the FPD. The free-spectral range of the resonator defines the usable signal bandwidth. The value of 2.5 GHz was adopted to the bandwidth of our photomixer and the AOS.

Fig. 5
Fig. 5

Confocal resonator design with elliptic mirrors.

Fig. 6
Fig. 6

Circuit diagram of the HEMT amplifier together with an IF circuit model of the detector.

Fig. 7
Fig. 7

Calculated noise temperature of the HEMT amplifier connected to a 50Ω load (lower curve), and the noise temperature as seen from the detector (upper curve).

Fig. 8
Fig. 8

System temperatures of the Cologne TDL heterodyne receiver with the CO2 laser (lowest curve), with the 50/50% BS (top curve), and with the FPD (middle curve).

Fig. 9
Fig. 9

Atmospheric ozone lines over Cologne, Germany. The upper two curves show the upper and lower sideband (mirrored) of the ozone spectrum, the third curve presents the expected heterodyne spectrum, and the lowest curve is the measured spectrum. We computed the synthetic spectra using data from the HITRAN96 database.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Y = P hot - Z P cold - Z ,
P T ,   ν = h ν 1 / 2 + exp h ν / kT - 1 - 1 Δ ν = kT CW Δ ν ,
T sys = T hot CW - YT cold CW Y - 1 ,
T ideal = h ν k ,

Metrics