Abstract

A periodically poled lithium niobate optical parametric oscillator pumped by a Tm:YAG laser at 2.0124-μm wavelength has been demonstrated. A pump pulse energy of 5.1 mJ generated 0.65 mJ of signal and idler pulse energy at a 50-Hz repetition frequency with a 27.8-μm domain-period-length grating. The lithium niobate crystal at a temperature of 180 °C yielded 3.61- and 4.55-μm signal and idler wavelengths, respectively. Wavelength tuning over a wide range was achieved with domain-period lengths from 25.5 to 28.2 μm and crystal temperature tuning from 50 to 180 °C. Signal wavelengths of 3.26–3.76 μm and idler wavelengths of 4.33–5.34 μm were generated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Myers, R. C. Eckhardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  2. R. M. Huffaker, “Airborne Doppler lidars using eye-safe solid-state laser technology for commercial and defense applications,” in Conference on Lasers and Electro-Optics, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 199–200.
  3. G. Hansson, D. D. Smith, “2 μm wavelength pumped optical parametric oscillator using periodically-poled LiNbO3,” in Advanced Solid State Lasers, R. R. Alfano, J. G. Fujimoto, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 238–240.
  4. G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion relation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]
  5. D. H. Jundt, “Temperature-dependent Sellmeier equations for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  6. J. A. C. Terry, Y. Cui, Y. Yang, W. Sibbet, M. H. Dunn, “Low-threshold operation of an all-solid-state KTP optical parametric oscillator,” J. Opt. Soc. Am. B 11, 758–769 (1994).
    [CrossRef]

1997 (1)

1995 (1)

1994 (1)

1984 (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion relation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Bosenberg, W. R.

Byer, R. L.

Cui, Y.

Dunn, M. H.

Eckhardt, R. C.

Edwards, G. J.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion relation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Fejer, M. M.

Hansson, G.

G. Hansson, D. D. Smith, “2 μm wavelength pumped optical parametric oscillator using periodically-poled LiNbO3,” in Advanced Solid State Lasers, R. R. Alfano, J. G. Fujimoto, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 238–240.

Huffaker, R. M.

R. M. Huffaker, “Airborne Doppler lidars using eye-safe solid-state laser technology for commercial and defense applications,” in Conference on Lasers and Electro-Optics, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 199–200.

Jundt, D. H.

Lawrence, M.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion relation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Myers, L. E.

Pierce, J. W.

Sibbet, W.

Smith, D. D.

G. Hansson, D. D. Smith, “2 μm wavelength pumped optical parametric oscillator using periodically-poled LiNbO3,” in Advanced Solid State Lasers, R. R. Alfano, J. G. Fujimoto, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 238–240.

Terry, J. A. C.

Yang, Y.

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion relation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Other (2)

R. M. Huffaker, “Airborne Doppler lidars using eye-safe solid-state laser technology for commercial and defense applications,” in Conference on Lasers and Electro-Optics, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 199–200.

G. Hansson, D. D. Smith, “2 μm wavelength pumped optical parametric oscillator using periodically-poled LiNbO3,” in Advanced Solid State Lasers, R. R. Alfano, J. G. Fujimoto, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 238–240.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for the 2-μm-wavelength pumped PPLN OPO.

Fig. 2
Fig. 2

Combined signal and idler output pulse energy as a function of pump pulse energy for a 27.8-μm period length grating at 180 °C crystal temperature. The OPO oscillated at 3.61- and 4.55-μm signal and idler wavelengths, respectively.

Fig. 3
Fig. 3

Measured and calculated phase-matching periods as a function of generated wavelengths at 100 °C crystal temperature. Filled squares, signal wavelengths; filled triangles, idler wavelengths. Phase-matching calculations using data from Refs. 4 and 5 are shown by dashed and solid curves, respectively.

Tables (1)

Tables Icon

Table 1 Measured Results for Each of the Phase-Matched Gratingsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ 1 + α T - 25 + β T - 25 2 = n e λ p ,   T λ p - n e λ s ,   T λ s - n e λ i ,   T λ i - 1 ,

Metrics