Abstract

We have studied the small-signal gain and the saturation parameter of a Tm:YAG laser in a longitudinal-mode oscillation. By using the cavity loss method, a maximum small-signal gain of 4.3%/cm at a crystal temperature of 15 °C and a maximum saturation parameter of 13 kW/cm2 at a crystal temperature of 25 °C were determined with an oscillation wavelength of 2013 nm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Esterowitz, “Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 μm operating cw at room temperature,” Opt. Eng. 29, 676–680 (1990).
    [CrossRef]
  2. R. C. Stornman, L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990).
    [CrossRef]
  3. T. S. Kubo, T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
    [CrossRef]
  4. T. Yokozawa, H. Hara, “Laser-diode end-pumped Tm3+:YAG eye-safe laser,” Appl. Opt. 35, 1424–1426 (1996).
    [CrossRef] [PubMed]
  5. M. E. Storm, J. P. Deyst, “Gain and energy storage in holmium YLF,” IEEE Trans. Photon. Technol. Lett. 3, 982–985 (1991).
    [CrossRef]
  6. M. Doshida, K. Kannari, M. Obara, “Gain measurement and upconversion analysis in Tm3+, Ho3+ co-doped alumino-zirco-fluoride glass,” IEEE J. Quantum Electron. 31, 910–915 (1995).
    [CrossRef]
  7. B. S. Patel, “Power coupling from a CO2 laser by a rotatable reflector,” Appl. Opt. 12, 943–945 (1973).
    [CrossRef] [PubMed]
  8. H. Hara, “Determination of the saturation parameter of a cw CO2 gasdynamic laser,” J. Appl. Phys. 48, 5341–5343 (1977).
    [CrossRef]
  9. W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
    [CrossRef]
  10. J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, L. Esterowitz, “Spectra and energy level of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
    [CrossRef]
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 255.
  12. P. Peterson, M. P. Sharma, A. Gavrielides, “Extraction efficiency and thermal lensing in Tm:YAG lasers,” Opt. Quantum Electron. 28, 695–707 (1996).
    [CrossRef]

1996 (2)

P. Peterson, M. P. Sharma, A. Gavrielides, “Extraction efficiency and thermal lensing in Tm:YAG lasers,” Opt. Quantum Electron. 28, 695–707 (1996).
[CrossRef]

T. Yokozawa, H. Hara, “Laser-diode end-pumped Tm3+:YAG eye-safe laser,” Appl. Opt. 35, 1424–1426 (1996).
[CrossRef] [PubMed]

1995 (1)

M. Doshida, K. Kannari, M. Obara, “Gain measurement and upconversion analysis in Tm3+, Ho3+ co-doped alumino-zirco-fluoride glass,” IEEE J. Quantum Electron. 31, 910–915 (1995).
[CrossRef]

1992 (1)

T. S. Kubo, T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

1991 (1)

M. E. Storm, J. P. Deyst, “Gain and energy storage in holmium YLF,” IEEE Trans. Photon. Technol. Lett. 3, 982–985 (1991).
[CrossRef]

1990 (2)

R. C. Stornman, L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990).
[CrossRef]

L. Esterowitz, “Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 μm operating cw at room temperature,” Opt. Eng. 29, 676–680 (1990).
[CrossRef]

1989 (1)

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, L. Esterowitz, “Spectra and energy level of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

1977 (1)

H. Hara, “Determination of the saturation parameter of a cw CO2 gasdynamic laser,” J. Appl. Phys. 48, 5341–5343 (1977).
[CrossRef]

1973 (1)

1963 (1)

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
[CrossRef]

Deyst, J. P.

M. E. Storm, J. P. Deyst, “Gain and energy storage in holmium YLF,” IEEE Trans. Photon. Technol. Lett. 3, 982–985 (1991).
[CrossRef]

Doshida, M.

M. Doshida, K. Kannari, M. Obara, “Gain measurement and upconversion analysis in Tm3+, Ho3+ co-doped alumino-zirco-fluoride glass,” IEEE J. Quantum Electron. 31, 910–915 (1995).
[CrossRef]

Esterowitz, L.

R. C. Stornman, L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486–488 (1990).
[CrossRef]

L. Esterowitz, “Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 μm operating cw at room temperature,” Opt. Eng. 29, 676–680 (1990).
[CrossRef]

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, L. Esterowitz, “Spectra and energy level of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Gavrielides, A.

P. Peterson, M. P. Sharma, A. Gavrielides, “Extraction efficiency and thermal lensing in Tm:YAG lasers,” Opt. Quantum Electron. 28, 695–707 (1996).
[CrossRef]

Gruber, J. B.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, L. Esterowitz, “Spectra and energy level of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Hara, H.

T. Yokozawa, H. Hara, “Laser-diode end-pumped Tm3+:YAG eye-safe laser,” Appl. Opt. 35, 1424–1426 (1996).
[CrossRef] [PubMed]

H. Hara, “Determination of the saturation parameter of a cw CO2 gasdynamic laser,” J. Appl. Phys. 48, 5341–5343 (1977).
[CrossRef]

Hills, M. E.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, L. Esterowitz, “Spectra and energy level of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Kane, T. J.

T. S. Kubo, T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

Kannari, K.

M. Doshida, K. Kannari, M. Obara, “Gain measurement and upconversion analysis in Tm3+, Ho3+ co-doped alumino-zirco-fluoride glass,” IEEE J. Quantum Electron. 31, 910–915 (1995).
[CrossRef]

Kintz, G. J.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, L. Esterowitz, “Spectra and energy level of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Kubo, T. S.

T. S. Kubo, T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

Macfarlane, R. M.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, L. Esterowitz, “Spectra and energy level of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Morrison, C. A.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, L. Esterowitz, “Spectra and energy level of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Obara, M.

M. Doshida, K. Kannari, M. Obara, “Gain measurement and upconversion analysis in Tm3+, Ho3+ co-doped alumino-zirco-fluoride glass,” IEEE J. Quantum Electron. 31, 910–915 (1995).
[CrossRef]

Patel, B. S.

Peterson, P.

P. Peterson, M. P. Sharma, A. Gavrielides, “Extraction efficiency and thermal lensing in Tm:YAG lasers,” Opt. Quantum Electron. 28, 695–707 (1996).
[CrossRef]

Quarles, G. J.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, L. Esterowitz, “Spectra and energy level of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Rigrod, W. W.

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
[CrossRef]

Sharma, M. P.

P. Peterson, M. P. Sharma, A. Gavrielides, “Extraction efficiency and thermal lensing in Tm:YAG lasers,” Opt. Quantum Electron. 28, 695–707 (1996).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 255.

Storm, M. E.

M. E. Storm, J. P. Deyst, “Gain and energy storage in holmium YLF,” IEEE Trans. Photon. Technol. Lett. 3, 982–985 (1991).
[CrossRef]

Stornman, R. C.

Turner, G. A.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, L. Esterowitz, “Spectra and energy level of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Yokozawa, T.

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

T. S. Kubo, T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[CrossRef]

M. Doshida, K. Kannari, M. Obara, “Gain measurement and upconversion analysis in Tm3+, Ho3+ co-doped alumino-zirco-fluoride glass,” IEEE J. Quantum Electron. 31, 910–915 (1995).
[CrossRef]

IEEE Trans. Photon. Technol. Lett. (1)

M. E. Storm, J. P. Deyst, “Gain and energy storage in holmium YLF,” IEEE Trans. Photon. Technol. Lett. 3, 982–985 (1991).
[CrossRef]

J. Appl. Phys. (2)

H. Hara, “Determination of the saturation parameter of a cw CO2 gasdynamic laser,” J. Appl. Phys. 48, 5341–5343 (1977).
[CrossRef]

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
[CrossRef]

Opt. Eng. (1)

L. Esterowitz, “Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 μm operating cw at room temperature,” Opt. Eng. 29, 676–680 (1990).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

P. Peterson, M. P. Sharma, A. Gavrielides, “Extraction efficiency and thermal lensing in Tm:YAG lasers,” Opt. Quantum Electron. 28, 695–707 (1996).
[CrossRef]

Phys. Rev. B (1)

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, L. Esterowitz, “Spectra and energy level of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464–9478 (1989).
[CrossRef]

Other (1)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 255.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Intracavity power versus induced cavity loss for four lasing wavelengths at a crystal temperature of 20 °C and with an absorbed pump power of 560 mW.

Fig. 3
Fig. 3

Small-signal gains as a function of absorbed pump power for four lasing wavelengths at a temperature of 20 °C and for two temperatures at a wavelength of 2013 nm.

Fig. 4
Fig. 4

Saturation parameter as a function of absorbed pump power. The experimental conditions are the same as in Fig. 3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

l cav = l cav ϕ = 2   tan 2 ϕ   -   sin - 1 sin ϕ / n tan 2 ϕ   -   sin - 1 sin ϕ / n ,
P = I s α 0 ST l 1 / l cav + T - 1 / 2 α 0 l ,
I s = h ω ¯ / σ τ eff ,

Metrics