Abstract

A detailed analysis of various factors that influence the accuracy of time-resolved laser-induced incandescence for the determination of primary soot particles is given. As the technique relies on the measurement of the signal ratio at two detection times of the enhanced thermal radiation after an intense laser pulse, guidelines are presented for a suitable choice of detection times to minimize statistical uncertainty. An error analysis is presented for the issues of laser energy absorption, vaporization, heat conduction, and signal detection. Results are shown for a laminar ethene diffusion flame that demonstrate that concurring results are obtained for various laser irradiances, detection characteristics, and times of observation.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, “Effects of laser-modulated particle incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
    [CrossRef]
  2. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
    [CrossRef] [PubMed]
  3. J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. Diesel engine using 2-D laser-induced incandescence imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1991).
  4. J. E. Dec, “Soot distribution in a D.I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” (Society of Automotive Engineers, Warrendale, Pa.1992).
  5. N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
    [CrossRef]
  6. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [CrossRef] [PubMed]
  7. C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  8. J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. diesel engine using laser-induced incandescence and light scattering,” (Society of Automotive Engineers, Warrendale, Pa., 1993).
  9. J. A. Pinson, T. Ni, T. A. Litzinger, “Quantitative imaging study of the effects of intake air temperature on soot evolution in an optically-accesible D.I. diesel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1994).
  10. C. M. Sorensen, J. Cai, N. Lu, “Light scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames,” Appl. Opt. 31, 6547–6557 (1992).
    [CrossRef] [PubMed]
  11. Ü. Ö. Köylü, “Quantitative analysis of in situ optical diagonistics for inferring particle/aggregate parameters in flames: implications for soot surface growth and total emissivity,” Combust. Flame 109, 488–500 (1996).
    [CrossRef]
  12. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
    [CrossRef] [PubMed]
  13. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
    [CrossRef]
  14. P. Roth, A. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
    [CrossRef]
  15. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurement with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
    [CrossRef] [PubMed]
  16. R. Wainner, J. M. Seitzman, “Soot analysis in combustion environments by laser-induced incandescence,” (American Institute of Aeronautics and Astronautics, Reston, Va., 1997).
  17. R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
    [CrossRef]
  18. F. Xu, P. B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
    [CrossRef]
  19. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
    [CrossRef]
  20. R. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991).
    [CrossRef] [PubMed]
  21. R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
    [CrossRef]
  22. R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
    [CrossRef]
  23. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
    [CrossRef] [PubMed]
  24. D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” (Society of Automotive Engineers, Warrendale, Pa., 1993).
  25. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  26. B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
    [CrossRef]
  27. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  28. K. C. Smyth, C. R. Shaddix, “The elusive history of m̃ = 1.57 - 0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
    [CrossRef]
  29. T. T. Charalampopoulos, J. D. Felske, “Refractive indices of soot particles deduced from in situ laser light scattering measurements,” Combust. Flame 68, 283–294 (1987).
    [CrossRef]
  30. B. M. Vaglieco, F. Beretta, A. d’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
    [CrossRef]
  31. P.-E. Bengtsson, L. Martinsson, M. Aldén, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
    [CrossRef]
  32. F. Rabenstein, A. Leipertz, “One-dimensional time-resolved Raman measurements in a sooting flame using 355 nm excitation,” Appl. Opt. 37, 4937–4943 (1998).
    [CrossRef]
  33. D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950.
    [CrossRef]
  34. R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
    [CrossRef]
  35. R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, London, 1976).
    [CrossRef]
  36. C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  37. M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
    [CrossRef]
  38. C. M. Megaridis, R. A. Dobbins, “Soot aerosol dynamics in a laminar ethylene diffusion flame,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1989), pp. 353–362.
    [CrossRef]
  39. R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1525–1532.

1998

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

F. Rabenstein, A. Leipertz, “One-dimensional time-resolved Raman measurements in a sooting flame using 355 nm excitation,” Appl. Opt. 37, 4937–4943 (1998).
[CrossRef]

1997

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurement with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

F. Xu, P. B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

1996

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Ü. Ö. Köylü, “Quantitative analysis of in situ optical diagonistics for inferring particle/aggregate parameters in flames: implications for soot surface growth and total emissivity,” Combust. Flame 109, 488–500 (1996).
[CrossRef]

P. Roth, A. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m̃ = 1.57 - 0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

1995

1994

R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

1993

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

1992

P.-E. Bengtsson, L. Martinsson, M. Aldén, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

C. M. Sorensen, J. Cai, N. Lu, “Light scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames,” Appl. Opt. 31, 6547–6557 (1992).
[CrossRef] [PubMed]

1991

1990

B. M. Vaglieco, F. Beretta, A. d’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

1987

T. T. Charalampopoulos, J. D. Felske, “Refractive indices of soot particles deduced from in situ laser light scattering measurements,” Combust. Flame 68, 283–294 (1987).
[CrossRef]

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

1984

1977

A. C. Eckbreth, “Effects of laser-modulated particle incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

Aldén, M.

P.-E. Bengtsson, L. Martinsson, M. Aldén, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

Appel, J.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Bengtsson, P.-E.

P.-E. Bengtsson, L. Martinsson, M. Aldén, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

Beretta, F.

B. M. Vaglieco, F. Beretta, A. d’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Bockhorn, H.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bryner, N. P.

R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

Cai, J.

Charalampopoulos, T. T.

T. T. Charalampopoulos, J. D. Felske, “Refractive indices of soot particles deduced from in situ laser light scattering measurements,” Combust. Flame 68, 283–294 (1987).
[CrossRef]

Choi, M. Y.

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

d’Alessio, A.

B. M. Vaglieco, F. Beretta, A. d’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Dasch, C. J.

Dec, J. E.

J. E. Dec, “Soot distribution in a D.I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” (Society of Automotive Engineers, Warrendale, Pa.1992).

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. Diesel engine using 2-D laser-induced incandescence imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1991).

Dobbins, R. A.

R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

R. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991).
[CrossRef] [PubMed]

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

C. M. Megaridis, R. A. Dobbins, “Soot aerosol dynamics in a laminar ethylene diffusion flame,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1989), pp. 353–362.
[CrossRef]

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1525–1532.

Eckbreth, A. C.

A. C. Eckbreth, “Effects of laser-modulated particle incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

Faeth, G. M.

F. Xu, P. B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

Felske, J. D.

T. T. Charalampopoulos, J. D. Felske, “Refractive indices of soot particles deduced from in situ laser light scattering measurements,” Combust. Flame 68, 283–294 (1987).
[CrossRef]

Filippov, A.

P. Roth, A. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Gaydon, A. G.

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, London, 1976).
[CrossRef]

Greenhalgh, D. A.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Gupta, S.

Hofeldt, D. L.

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

Hofmann, D.

D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950.
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Jensen, K. A.

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

Jungfleisch, B.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Köylü, Ü. Ö.

Ü. Ö. Köylü, “Quantitative analysis of in situ optical diagonistics for inferring particle/aggregate parameters in flames: implications for soot surface growth and total emissivity,” Combust. Flame 109, 488–500 (1996).
[CrossRef]

Kröll, S.

P.-E. Bengtsson, L. Martinsson, M. Aldén, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

Lee, K.-O.

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

Lee, T.-W.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Leipertz, A.

F. Rabenstein, A. Leipertz, “One-dimensional time-resolved Raman measurements in a sooting flame using 355 nm excitation,” Appl. Opt. 37, 4937–4943 (1998).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950.
[CrossRef]

Litzinger, T. A.

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. diesel engine using laser-induced incandescence and light scattering,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

J. A. Pinson, T. Ni, T. A. Litzinger, “Quantitative imaging study of the effects of intake air temperature on soot evolution in an optically-accesible D.I. diesel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1994).

Lu, N.

Marquardt, M.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Martinsson, L.

P.-E. Bengtsson, L. Martinsson, M. Aldén, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

Megaridis, C. M.

R. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991).
[CrossRef] [PubMed]

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

C. M. Megaridis, R. A. Dobbins, “Soot aerosol dynamics in a laminar ethylene diffusion flame,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1989), pp. 353–362.
[CrossRef]

Melton, L. A.

Mewes, B.

Mitchell, D. L.

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. diesel engine using laser-induced incandescence and light scattering,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

Mulholland, G. W.

R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

J. A. Pinson, T. Ni, T. A. Litzinger, “Quantitative imaging study of the effects of intake air temperature on soot evolution in an optically-accesible D.I. diesel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1994).

Pearse, R. W. B.

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, London, 1976).
[CrossRef]

Pinson, J. A.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. diesel engine using laser-induced incandescence and light scattering,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

J. A. Pinson, T. Ni, T. A. Litzinger, “Quantitative imaging study of the effects of intake air temperature on soot evolution in an optically-accesible D.I. diesel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1994).

Puri, R.

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

Quay, B.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Rabenstein, F.

Richardson, T. F.

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

Roth, P.

P. Roth, A. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1525–1532.

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. diesel engine using laser-induced incandescence and light scattering,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

Schraml, S.

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Seitzman, J. M.

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurement with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

R. Wainner, J. M. Seitzman, “Soot analysis in combustion environments by laser-induced incandescence,” (American Institute of Aeronautics and Astronautics, Reston, Va., 1997).

Semerjian, H. G.

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1525–1532.

Shaddix, C. R.

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m̃ = 1.57 - 0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Siebers, D. L.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. Diesel engine using 2-D laser-induced incandescence imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1991).

Smyth, K. C.

K. C. Smyth, C. R. Shaddix, “The elusive history of m̃ = 1.57 - 0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Sorensen, C. M.

Sunderland, P. B.

F. Xu, P. B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

Suntz, R.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Vaglieco, B. M.

B. M. Vaglieco, F. Beretta, A. d’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Wainner, R.

R. Wainner, J. M. Seitzman, “Soot analysis in combustion environments by laser-induced incandescence,” (American Institute of Aeronautics and Astronautics, Reston, Va., 1997).

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Will, S.

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Xu, F.

F. Xu, P. B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

zur Loye, A. O.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. Diesel engine using 2-D laser-induced incandescence imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1991).

Appl. Opt.

Appl. Phys. B

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Atmos. Environ.

R. A. Dobbins, G. W. Mulholland, N. P. Bryner, “Comparison of a fractal smoke optics model with light extinction measurements,” Atmos. Environ. 28, 889–897 (1994).
[CrossRef]

Ber. Bunsenges. Phys. Chem.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Combust. Flame

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Ü. Ö. Köylü, “Quantitative analysis of in situ optical diagonistics for inferring particle/aggregate parameters in flames: implications for soot surface growth and total emissivity,” Combust. Flame 109, 488–500 (1996).
[CrossRef]

F. Xu, P. B. Sunderland, G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames at atmospheric pressure,” Combust. Flame 108, 471–493 (1997).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m̃ = 1.57 - 0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

T. T. Charalampopoulos, J. D. Felske, “Refractive indices of soot particles deduced from in situ laser light scattering measurements,” Combust. Flame 68, 283–294 (1987).
[CrossRef]

B. M. Vaglieco, F. Beretta, A. d’Alessio, “In situ evaluation of the soot refractive index in the UV–visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

R. Puri, T. F. Richardson, R. J. Santoro, R. A. Dobbins, “Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame,” Combust. Flame 92, 320–333 (1993).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

Combust. Sci. Technol.

P.-E. Bengtsson, L. Martinsson, M. Aldén, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

J. Aerosol Sci.

P. Roth, A. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

J. Appl. Phys.

A. C. Eckbreth, “Effects of laser-modulated particle incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

Langmuir

R. A. Dobbins, C. M. Megaridis, “Morphology of flame-generated soot as determined by thermophoretic sampling,” Langmuir 3, 254–259 (1987).
[CrossRef]

Opt. Lett.

Other

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, London, 1976).
[CrossRef]

C. M. Megaridis, R. A. Dobbins, “Soot aerosol dynamics in a laminar ethylene diffusion flame,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1989), pp. 353–362.
[CrossRef]

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1525–1532.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950.
[CrossRef]

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

R. Wainner, J. M. Seitzman, “Soot analysis in combustion environments by laser-induced incandescence,” (American Institute of Aeronautics and Astronautics, Reston, Va., 1997).

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D.I. Diesel engine using 2-D laser-induced incandescence imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1991).

J. E. Dec, “Soot distribution in a D.I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” (Society of Automotive Engineers, Warrendale, Pa.1992).

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D.I. diesel engine using laser-induced incandescence and light scattering,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

J. A. Pinson, T. Ni, T. A. Litzinger, “Quantitative imaging study of the effects of intake air temperature on soot evolution in an optically-accesible D.I. diesel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic representation of the power balance of a laser-heated soot particle.

Fig. 2
Fig. 2

Temperature curves for particles of various sizes after irradiation by a laser pulse of 8-ns duration and 108-W/cm2 peak irradiance.

Fig. 3
Fig. 3

Comparison of the relative magnitudes of various heat loss paths for a heated soot particle.

Fig. 4
Fig. 4

LII signal decay for various particle sizes, normalized to maxima.

Fig. 5
Fig. 5

Ratio S(t 2)/S(t 1) of LII signals at two times for various choices of the second moment of observation t 2; the time t 1 has been fixed to 100 ns.

Fig. 6
Fig. 6

Statistical uncertainty of primary particle diameter determination for various choices of the second moment of observation; the example is based on 5000 photoelectrons at detection time t 1.

Fig. 7
Fig. 7

Relative error or variation in the primary particle size determined for a +10% (open bars) or a -10% (filled bars) change in the underlying parameters. Examples are shown for a true diameter of (left) 20 nm and (right) 40 nm.

Fig. 8
Fig. 8

Particle sizes determined for 20-, 30-, and 40-nm particles if the irradiance deviates from the assumed value of 1 × 108 W/cm2.

Fig. 9
Fig. 9

Relative error or variation in the primary particle size as a function of temperature for a 30-nm particle and various detection times t 2.

Fig. 10
Fig. 10

Map of primary particle sizes in the upper region of an ethene diffusion flame.

Fig. 11
Fig. 11

Profile of particle sizes at a height of 20 mm above the burner for various values of laser irradiance.

Fig. 12
Fig. 12

Profile of particle sizes at a height of 20 mm above the burner obtained with different spectral filters in the detection path. The designations 450 nm and 500 nm refer to short-pass filters with those respective cutoff wavelengths, and 450 nm + IR denotes the short-pass filter used in previous work, which exhibits an additional transmission in the near IR, which has now been accounted for. Additionally, the results obtained with the 450-nm filter and a second delay time of t 2 = 600 ns have been included (450 nm, 600 ns).

Fig. 13
Fig. 13

Particle sizes obtained at the centerline and a height of 20 mm above the burner for various detection times t 2. Error bars refer to the theoretical standard deviation; the shorter error bar for t 2 = 800 ns is the experimental standard deviation of ten independent measurements.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q abs π d p 2 4   E i - Λ T - T 0 π d p 2 + Δ H v M d m d t - π d p 2     ε d p ,   λ M λ b T ,   λ d λ - π d p 3 6 ρ C   d T d t = 0 .
S LII     d p 2     R λ ε λ ,   d p M λ b T ,   λ d λ ,
E i = 1 T max exp Δ H v T max - T v RT max T v C ˜ Δ H v ,
C ˜ = λ p RM v π d p E m ˜ RM s 2 .
E m ˜ = - Im m ˜ 2 - 1 m ˜ 2 + 2 .

Metrics