Abstract

A novel concept for trace chemical analysis in liquids has been demonstrated. The technique utilizes light absorption in a superheated liquid. Although a superheated liquid is thermodynamically unstable, a high degree of superheating can be dynamically achieved for a short period of time. During this time the superheated liquid is extremely sensitive to boiling at nucleation sites produced by energy deposition. Observation of bubbles in the superheated liquid in some sense provides amplification of the initial energy deposition. Bubble chambers containing superheated liquids have been used to detect energetic particles; now a bubble chamber is used to detect a trace chemical in superheated liquid propane by observing bubble formation initiated by optical absorption. Crystal violet is used as a test case and can be detected at the subpart-per-1012 level by using a Nd:YAG laser. The mechanism for bubble formation and ideas for further improvement are discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. G. Harigel, D. C. Colley, D. C. Cundy, eds., Bubbles 40: Proceedings of the Conference on the Bubble Chamber and Its Contributions to Particle Physics (North-Holland, Amsterdam, 1994) [also published as Nucl. Phys. B Proc. Suppl. 36, (1994)].
  2. R. P. Shutt, ed., Bubble and Spark Chambers (Academic, New York, 1967), Vol. 1.
  3. R. C. Reid, “Superheated liquids,” Am. Sci. 64, 146–156 (1976).
  4. F. Seitz, “On the theory of the bubble chamber,” Phys. Fluids 1, 2–13 (1958).
    [CrossRef]
  5. J. Harper, J. C. Rich, “Radiation-induced nucleation in superheated liquid droplet neutron detectors,” Nucl. Instrum. Methods Phys. Res. A 336, 220–225 (1993).
    [CrossRef]
  6. N. E. Shafer, R. N. Zare, “Through a beer glass darkly,” Phys. Today 44, 48–52 (October1991).
    [CrossRef]
  7. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
    [CrossRef]
  8. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996), Chap. 7.
  9. R. A. Leach, J. M. Harris, “Supercritical fluids as spectroscopic solvents for thermooptical absorption measurements,” Anal. Chem. 56, 1481–1487 (1984).
    [CrossRef]
  10. R. A. Leach, J. M. Harris, “Thermal lens absorption measurements by flow injection into supercritical fluid solvents,” Anal. Chem. 56, 2801–2805 (1984).
    [CrossRef]
  11. G. J. Diebold, J. S. Hayden, “Opto-acoustic detection of chain reactions,” Chem. Phys. 49, 429–437 (1980).
    [CrossRef]
  12. D. Magde, M. W. Windsor, “Picosecond internal conversion in crystal violet,” Chem. Phys. Lett. 24, 144–148 (1974).
    [CrossRef]
  13. D. A. Cremers, M. W. Windsor, “A study of the viscosity-dependent electronic relaxation of some triphenylmethane dyes using picosecond flash photolysis,” Chem. Phys. Lett. 71, 27–32 (1980).
    [CrossRef]
  14. F. J. Green, The Sigma-Aldrich Handbook of Stains, Dyes and Indicators (Aldrich Chemical Co., Milwaukee, Wis., 1990).
  15. I. Carmichael, G. L. Hug, “Triplet–triplet absorption spectra of organic molecules in condensed phases,” J. Phys. Chem. Ref. Data 15, 1–250 (1986).
    [CrossRef]
  16. L. Manring, K. Peters, “Photodissociation of triarylmethanes,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, ed. (Springer-Verlag, New York, 1984) pp. 304–307.
    [CrossRef]
  17. R. C. Stamberg, D. E. Gillespie, “Laser-stimulated nucleation in a bubble chamber,” J. Appl. Phys. 37, 459–461 (1966).
    [CrossRef]
  18. G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the formation of narrow bubble tracks by a laser beam in argon, nitrogen, and hydrogen bubble chambers,” Nucl. Instrum. Methods 188, 517–520 (1981).
    [CrossRef]
  19. D. A. Glaser, D. C. Rahm, “Characteristics of bubble chambers,” Phys. Rev. 97, 474–479 (1955).
    [CrossRef]
  20. C. T. Avedisian, “The homogeneous nucleation limits of liquids,” J. Phys. Chem. Ref. Data 14, 695–729 (1985).
    [CrossRef]
  21. Ya. M. Kimelfeld, “Infrared spectroscopy of solutions in liquified simple gases,” in Vibrational Spectra and StructureJ. R. Durig, ed. (Elsevier, New York, 1991), Vol. 19, pp. 315–367.

1993 (1)

J. Harper, J. C. Rich, “Radiation-induced nucleation in superheated liquid droplet neutron detectors,” Nucl. Instrum. Methods Phys. Res. A 336, 220–225 (1993).
[CrossRef]

1991 (1)

N. E. Shafer, R. N. Zare, “Through a beer glass darkly,” Phys. Today 44, 48–52 (October1991).
[CrossRef]

1986 (2)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

I. Carmichael, G. L. Hug, “Triplet–triplet absorption spectra of organic molecules in condensed phases,” J. Phys. Chem. Ref. Data 15, 1–250 (1986).
[CrossRef]

1985 (1)

C. T. Avedisian, “The homogeneous nucleation limits of liquids,” J. Phys. Chem. Ref. Data 14, 695–729 (1985).
[CrossRef]

1984 (2)

R. A. Leach, J. M. Harris, “Supercritical fluids as spectroscopic solvents for thermooptical absorption measurements,” Anal. Chem. 56, 1481–1487 (1984).
[CrossRef]

R. A. Leach, J. M. Harris, “Thermal lens absorption measurements by flow injection into supercritical fluid solvents,” Anal. Chem. 56, 2801–2805 (1984).
[CrossRef]

1981 (1)

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the formation of narrow bubble tracks by a laser beam in argon, nitrogen, and hydrogen bubble chambers,” Nucl. Instrum. Methods 188, 517–520 (1981).
[CrossRef]

1980 (2)

D. A. Cremers, M. W. Windsor, “A study of the viscosity-dependent electronic relaxation of some triphenylmethane dyes using picosecond flash photolysis,” Chem. Phys. Lett. 71, 27–32 (1980).
[CrossRef]

G. J. Diebold, J. S. Hayden, “Opto-acoustic detection of chain reactions,” Chem. Phys. 49, 429–437 (1980).
[CrossRef]

1976 (1)

R. C. Reid, “Superheated liquids,” Am. Sci. 64, 146–156 (1976).

1974 (1)

D. Magde, M. W. Windsor, “Picosecond internal conversion in crystal violet,” Chem. Phys. Lett. 24, 144–148 (1974).
[CrossRef]

1966 (1)

R. C. Stamberg, D. E. Gillespie, “Laser-stimulated nucleation in a bubble chamber,” J. Appl. Phys. 37, 459–461 (1966).
[CrossRef]

1958 (1)

F. Seitz, “On the theory of the bubble chamber,” Phys. Fluids 1, 2–13 (1958).
[CrossRef]

1955 (1)

D. A. Glaser, D. C. Rahm, “Characteristics of bubble chambers,” Phys. Rev. 97, 474–479 (1955).
[CrossRef]

Avedisian, C. T.

C. T. Avedisian, “The homogeneous nucleation limits of liquids,” J. Phys. Chem. Ref. Data 14, 695–729 (1985).
[CrossRef]

Bialkowski, S. E.

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996), Chap. 7.

Carmichael, I.

I. Carmichael, G. L. Hug, “Triplet–triplet absorption spectra of organic molecules in condensed phases,” J. Phys. Chem. Ref. Data 15, 1–250 (1986).
[CrossRef]

Cremers, D. A.

D. A. Cremers, M. W. Windsor, “A study of the viscosity-dependent electronic relaxation of some triphenylmethane dyes using picosecond flash photolysis,” Chem. Phys. Lett. 71, 27–32 (1980).
[CrossRef]

Diebold, G. J.

G. J. Diebold, J. S. Hayden, “Opto-acoustic detection of chain reactions,” Chem. Phys. 49, 429–437 (1980).
[CrossRef]

Gillespie, D. E.

R. C. Stamberg, D. E. Gillespie, “Laser-stimulated nucleation in a bubble chamber,” J. Appl. Phys. 37, 459–461 (1966).
[CrossRef]

Glaser, D. A.

D. A. Glaser, D. C. Rahm, “Characteristics of bubble chambers,” Phys. Rev. 97, 474–479 (1955).
[CrossRef]

Green, F. J.

F. J. Green, The Sigma-Aldrich Handbook of Stains, Dyes and Indicators (Aldrich Chemical Co., Milwaukee, Wis., 1990).

Harigel, G.

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the formation of narrow bubble tracks by a laser beam in argon, nitrogen, and hydrogen bubble chambers,” Nucl. Instrum. Methods 188, 517–520 (1981).
[CrossRef]

Harper, J.

J. Harper, J. C. Rich, “Radiation-induced nucleation in superheated liquid droplet neutron detectors,” Nucl. Instrum. Methods Phys. Res. A 336, 220–225 (1993).
[CrossRef]

Harris, J. M.

R. A. Leach, J. M. Harris, “Supercritical fluids as spectroscopic solvents for thermooptical absorption measurements,” Anal. Chem. 56, 1481–1487 (1984).
[CrossRef]

R. A. Leach, J. M. Harris, “Thermal lens absorption measurements by flow injection into supercritical fluid solvents,” Anal. Chem. 56, 2801–2805 (1984).
[CrossRef]

Hayden, J. S.

G. J. Diebold, J. S. Hayden, “Opto-acoustic detection of chain reactions,” Chem. Phys. 49, 429–437 (1980).
[CrossRef]

Hilke, H. J.

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the formation of narrow bubble tracks by a laser beam in argon, nitrogen, and hydrogen bubble chambers,” Nucl. Instrum. Methods 188, 517–520 (1981).
[CrossRef]

Hug, G. L.

I. Carmichael, G. L. Hug, “Triplet–triplet absorption spectra of organic molecules in condensed phases,” J. Phys. Chem. Ref. Data 15, 1–250 (1986).
[CrossRef]

Kimelfeld, Ya. M.

Ya. M. Kimelfeld, “Infrared spectroscopy of solutions in liquified simple gases,” in Vibrational Spectra and StructureJ. R. Durig, ed. (Elsevier, New York, 1991), Vol. 19, pp. 315–367.

Leach, R. A.

R. A. Leach, J. M. Harris, “Thermal lens absorption measurements by flow injection into supercritical fluid solvents,” Anal. Chem. 56, 2801–2805 (1984).
[CrossRef]

R. A. Leach, J. M. Harris, “Supercritical fluids as spectroscopic solvents for thermooptical absorption measurements,” Anal. Chem. 56, 1481–1487 (1984).
[CrossRef]

Linser, G.

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the formation of narrow bubble tracks by a laser beam in argon, nitrogen, and hydrogen bubble chambers,” Nucl. Instrum. Methods 188, 517–520 (1981).
[CrossRef]

Magde, D.

D. Magde, M. W. Windsor, “Picosecond internal conversion in crystal violet,” Chem. Phys. Lett. 24, 144–148 (1974).
[CrossRef]

Manring, L.

L. Manring, K. Peters, “Photodissociation of triarylmethanes,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, ed. (Springer-Verlag, New York, 1984) pp. 304–307.
[CrossRef]

Peters, K.

L. Manring, K. Peters, “Photodissociation of triarylmethanes,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, ed. (Springer-Verlag, New York, 1984) pp. 304–307.
[CrossRef]

Rahm, D. C.

D. A. Glaser, D. C. Rahm, “Characteristics of bubble chambers,” Phys. Rev. 97, 474–479 (1955).
[CrossRef]

Reid, R. C.

R. C. Reid, “Superheated liquids,” Am. Sci. 64, 146–156 (1976).

Rich, J. C.

J. Harper, J. C. Rich, “Radiation-induced nucleation in superheated liquid droplet neutron detectors,” Nucl. Instrum. Methods Phys. Res. A 336, 220–225 (1993).
[CrossRef]

Schenk, F.

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the formation of narrow bubble tracks by a laser beam in argon, nitrogen, and hydrogen bubble chambers,” Nucl. Instrum. Methods 188, 517–520 (1981).
[CrossRef]

Seitz, F.

F. Seitz, “On the theory of the bubble chamber,” Phys. Fluids 1, 2–13 (1958).
[CrossRef]

Shafer, N. E.

N. E. Shafer, R. N. Zare, “Through a beer glass darkly,” Phys. Today 44, 48–52 (October1991).
[CrossRef]

Stamberg, R. C.

R. C. Stamberg, D. E. Gillespie, “Laser-stimulated nucleation in a bubble chamber,” J. Appl. Phys. 37, 459–461 (1966).
[CrossRef]

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

Windsor, M. W.

D. A. Cremers, M. W. Windsor, “A study of the viscosity-dependent electronic relaxation of some triphenylmethane dyes using picosecond flash photolysis,” Chem. Phys. Lett. 71, 27–32 (1980).
[CrossRef]

D. Magde, M. W. Windsor, “Picosecond internal conversion in crystal violet,” Chem. Phys. Lett. 24, 144–148 (1974).
[CrossRef]

Zare, R. N.

N. E. Shafer, R. N. Zare, “Through a beer glass darkly,” Phys. Today 44, 48–52 (October1991).
[CrossRef]

Am. Sci. (1)

R. C. Reid, “Superheated liquids,” Am. Sci. 64, 146–156 (1976).

Anal. Chem. (2)

R. A. Leach, J. M. Harris, “Supercritical fluids as spectroscopic solvents for thermooptical absorption measurements,” Anal. Chem. 56, 1481–1487 (1984).
[CrossRef]

R. A. Leach, J. M. Harris, “Thermal lens absorption measurements by flow injection into supercritical fluid solvents,” Anal. Chem. 56, 2801–2805 (1984).
[CrossRef]

Chem. Phys. (1)

G. J. Diebold, J. S. Hayden, “Opto-acoustic detection of chain reactions,” Chem. Phys. 49, 429–437 (1980).
[CrossRef]

Chem. Phys. Lett. (2)

D. Magde, M. W. Windsor, “Picosecond internal conversion in crystal violet,” Chem. Phys. Lett. 24, 144–148 (1974).
[CrossRef]

D. A. Cremers, M. W. Windsor, “A study of the viscosity-dependent electronic relaxation of some triphenylmethane dyes using picosecond flash photolysis,” Chem. Phys. Lett. 71, 27–32 (1980).
[CrossRef]

J. Appl. Phys. (1)

R. C. Stamberg, D. E. Gillespie, “Laser-stimulated nucleation in a bubble chamber,” J. Appl. Phys. 37, 459–461 (1966).
[CrossRef]

J. Phys. Chem. Ref. Data (2)

I. Carmichael, G. L. Hug, “Triplet–triplet absorption spectra of organic molecules in condensed phases,” J. Phys. Chem. Ref. Data 15, 1–250 (1986).
[CrossRef]

C. T. Avedisian, “The homogeneous nucleation limits of liquids,” J. Phys. Chem. Ref. Data 14, 695–729 (1985).
[CrossRef]

Nucl. Instrum. Methods (1)

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the formation of narrow bubble tracks by a laser beam in argon, nitrogen, and hydrogen bubble chambers,” Nucl. Instrum. Methods 188, 517–520 (1981).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

J. Harper, J. C. Rich, “Radiation-induced nucleation in superheated liquid droplet neutron detectors,” Nucl. Instrum. Methods Phys. Res. A 336, 220–225 (1993).
[CrossRef]

Phys. Fluids (1)

F. Seitz, “On the theory of the bubble chamber,” Phys. Fluids 1, 2–13 (1958).
[CrossRef]

Phys. Rev. (1)

D. A. Glaser, D. C. Rahm, “Characteristics of bubble chambers,” Phys. Rev. 97, 474–479 (1955).
[CrossRef]

Phys. Today (1)

N. E. Shafer, R. N. Zare, “Through a beer glass darkly,” Phys. Today 44, 48–52 (October1991).
[CrossRef]

Rev. Mod. Phys. (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

Other (6)

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996), Chap. 7.

G. G. Harigel, D. C. Colley, D. C. Cundy, eds., Bubbles 40: Proceedings of the Conference on the Bubble Chamber and Its Contributions to Particle Physics (North-Holland, Amsterdam, 1994) [also published as Nucl. Phys. B Proc. Suppl. 36, (1994)].

R. P. Shutt, ed., Bubble and Spark Chambers (Academic, New York, 1967), Vol. 1.

L. Manring, K. Peters, “Photodissociation of triarylmethanes,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, ed. (Springer-Verlag, New York, 1984) pp. 304–307.
[CrossRef]

F. J. Green, The Sigma-Aldrich Handbook of Stains, Dyes and Indicators (Aldrich Chemical Co., Milwaukee, Wis., 1990).

Ya. M. Kimelfeld, “Infrared spectroscopy of solutions in liquified simple gases,” in Vibrational Spectra and StructureJ. R. Durig, ed. (Elsevier, New York, 1991), Vol. 19, pp. 315–367.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental apparatus, showing the bubble chamber, the camera, some of the timing electronics, the frame grabber, the computer for image analysis, and the sample injection valve.

Fig. 2
Fig. 2

Bubble tracks produced by a beam of frequency-doubled Nd:YAG laser in neat liquid propane. The scale of the image is approximately 1 cm × 1 cm.

Fig. 3
Fig. 3

Number of bubbles as a function of excitation energy for the neat propane and different grades of commercial acetone solvents. HPLC-graded acetone has the highest numerical purity (99.9% versus 99.7% for spectroscopic grade) but shows the highest bubble counts.

Fig. 4
Fig. 4

Bubble-versus-energy plots for (CV) solutions. The concentrations of CV in the cell are 1.4 × 10-11, 1.4 × 10-12, and 5.6 × 10-13 mol/l. The number of bubbles at a given energy increases as the dye concentration increases. However, the relation is not reproducible.

Fig. 5
Fig. 5

Number of bubbles for CV solution at a given energy (400 μJ) and wavelength (532 nm) decays after injection, indicating the precipitation of CV dye in the liquid propane.

Fig. 6
Fig. 6

Multiple-wavelength measurement of signal versus wavelength. The laser energy was 200 μJ from an optical parametric oscillator; the CV concentration was 80 parts per 1012. The error bars are ±1 standard deviation; approximately ten shots are averaged at each point, each normalized to the energy per shot. Typically, approximately 150–200 counts are obtained for the CV, and 50 for the background. The background is for pure propane without injection of CV. It clearly shows that a signal is obtained across much of the visible spectrum, different from the sharply peaked dye monomer spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E c = 4 π r c 2 σ - T   d σ d T + 4 3   π r c 3 ρ v h + p l ,

Metrics