Abstract

Techniques for two types of 10-μm band synthetic aperture infrared laser radar using a hypothetical reference point target (RPT) are presented. One is for imaging static objects with a single two-dimensional scanning aperture. Through the simple manipulation of a reference wave phase, a desired image can be obtained merely by the two-dimensional Fourier transformation of the correlator output between the intermediate frequency signals of the reference and object waves. The other, with a one-dimensional aperture array, is for moving objects that pass across the array direction without attitude change. We performed imaging by using a two-dimensional RPT correlation method. We demonstrate the capability of these methods for imaging and evaluate the necessary conditions for signal-to-noise ratio and random phase errors in signal reception through numerical simulations in terms of feasibility.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
    [CrossRef]
  2. L. J. Cutrona, “Synthetic aperture radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, New York, 1970).
  3. F. T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing (Addison-Wesley, Reading, Mass., 1982).
  4. C. A. Wiley, “Synthetic aperture radars,” IEEE Trans. Aerosp. Electron. Syst. AES-21, 440–443 (1985).
    [CrossRef]
  5. G. W. Swenson, N. C. Mathur, “The interferometer in radio astronomy,” Proc. IEEE 56, 2114–2130 (1968).
    [CrossRef]
  6. C. van Schooneveld, ed., Image Formation from Coherence Functions in Astronomy, in Proceedings of the International Astronomical Union Colloquium No. 49 (Reidel, Dordrecht, The Netherlands, 1979).
  7. J. C. Marron, K. S. Schroeder, “Three-dimensional lensless imaging using laser frequency diversity,” Appl. Opt. 31, 255–262 (1992).
    [CrossRef] [PubMed]
  8. W. M. Brown, R. J. Fredricks, “Range-Doppler imaging with motion through resolution cells,” IEEE Trans. Aerosp. Electron. Syst. AES-5, 98–102 (1969).
    [CrossRef]
  9. J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst. AES-16, 23–52 (1980).
    [CrossRef]
  10. J. R. Fienup, “Gradient-search phase-retrieval algorithm for inverse synthetic-aperture radar,” Opt. Eng. 33, 3237–3242 (1994).
    [CrossRef]
  11. H. Wu, G. Y. Delisle, “Precision tracking algorithms for ISAR imaging,” IEEE Trans. Aerosp. Electron. Syst. 32, 243–254 (1996).
    [CrossRef]
  12. T. G. Moore, “A new algorithm for the formation of ISAR images,” IEEE Trans. Aerosp. Electron. Syst. 32, 714–721 (1996).
    [CrossRef]
  13. C. C. Aleksoff, “Interferometric two-dimensional imaging of rotating objects,” Opt. Lett. 1, 54–55 (1977).
    [CrossRef] [PubMed]
  14. C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
    [CrossRef]
  15. S. E. Clark, L. R. Jones, L. F. DeSandre, “Coherent array optical imaging,” Appl. Opt. 30, 1804–1810 (1991).
    [CrossRef] [PubMed]
  16. P. S. Idell, D. G. Voelz, “Nonconventional laser imaging using sampled-aperture receivers,” Opt. Photon. News 3:4, 8–15 (1992).
    [CrossRef]
  17. A. D. Cenzo, “A new look at nonseparable synthetic aperture radar processing,” IEEE Trans. Aerosp. Electron. Syst. 24, 218–224 (1988).
    [CrossRef]
  18. G. Franceschetti, G. Schirinzi, “A SAR processor based on two-dimensional FFT codes,” IEEE Trans. Aerosp. Electron. Syst. 26, 356–366 (1990).
    [CrossRef]

1996 (2)

H. Wu, G. Y. Delisle, “Precision tracking algorithms for ISAR imaging,” IEEE Trans. Aerosp. Electron. Syst. 32, 243–254 (1996).
[CrossRef]

T. G. Moore, “A new algorithm for the formation of ISAR images,” IEEE Trans. Aerosp. Electron. Syst. 32, 714–721 (1996).
[CrossRef]

1994 (1)

J. R. Fienup, “Gradient-search phase-retrieval algorithm for inverse synthetic-aperture radar,” Opt. Eng. 33, 3237–3242 (1994).
[CrossRef]

1992 (2)

J. C. Marron, K. S. Schroeder, “Three-dimensional lensless imaging using laser frequency diversity,” Appl. Opt. 31, 255–262 (1992).
[CrossRef] [PubMed]

P. S. Idell, D. G. Voelz, “Nonconventional laser imaging using sampled-aperture receivers,” Opt. Photon. News 3:4, 8–15 (1992).
[CrossRef]

1991 (1)

1990 (1)

G. Franceschetti, G. Schirinzi, “A SAR processor based on two-dimensional FFT codes,” IEEE Trans. Aerosp. Electron. Syst. 26, 356–366 (1990).
[CrossRef]

1988 (1)

A. D. Cenzo, “A new look at nonseparable synthetic aperture radar processing,” IEEE Trans. Aerosp. Electron. Syst. 24, 218–224 (1988).
[CrossRef]

1985 (1)

C. A. Wiley, “Synthetic aperture radars,” IEEE Trans. Aerosp. Electron. Syst. AES-21, 440–443 (1985).
[CrossRef]

1984 (1)

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

1980 (1)

J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst. AES-16, 23–52 (1980).
[CrossRef]

1977 (1)

1969 (1)

W. M. Brown, R. J. Fredricks, “Range-Doppler imaging with motion through resolution cells,” IEEE Trans. Aerosp. Electron. Syst. AES-5, 98–102 (1969).
[CrossRef]

1968 (1)

G. W. Swenson, N. C. Mathur, “The interferometer in radio astronomy,” Proc. IEEE 56, 2114–2130 (1968).
[CrossRef]

Abshier, J. O.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Accetta, J. S.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Aleksoff, C. C.

C. C. Aleksoff, “Interferometric two-dimensional imaging of rotating objects,” Opt. Lett. 1, 54–55 (1977).
[CrossRef] [PubMed]

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Ausherman, D. A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

Brown, W. M.

W. M. Brown, R. J. Fredricks, “Range-Doppler imaging with motion through resolution cells,” IEEE Trans. Aerosp. Electron. Syst. AES-5, 98–102 (1969).
[CrossRef]

Cenzo, A. D.

A. D. Cenzo, “A new look at nonseparable synthetic aperture radar processing,” IEEE Trans. Aerosp. Electron. Syst. 24, 218–224 (1988).
[CrossRef]

Clark, S. E.

Cutrona, L. J.

L. J. Cutrona, “Synthetic aperture radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, New York, 1970).

Delisle, G. Y.

H. Wu, G. Y. Delisle, “Precision tracking algorithms for ISAR imaging,” IEEE Trans. Aerosp. Electron. Syst. 32, 243–254 (1996).
[CrossRef]

DeSandre, L. F.

Fee, M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Fienup, J. R.

J. R. Fienup, “Gradient-search phase-retrieval algorithm for inverse synthetic-aperture radar,” Opt. Eng. 33, 3237–3242 (1994).
[CrossRef]

Franceschetti, G.

G. Franceschetti, G. Schirinzi, “A SAR processor based on two-dimensional FFT codes,” IEEE Trans. Aerosp. Electron. Syst. 26, 356–366 (1990).
[CrossRef]

Fredricks, R. J.

W. M. Brown, R. J. Fredricks, “Range-Doppler imaging with motion through resolution cells,” IEEE Trans. Aerosp. Electron. Syst. AES-5, 98–102 (1969).
[CrossRef]

Fung, A. K.

F. T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing (Addison-Wesley, Reading, Mass., 1982).

Idell, P. S.

P. S. Idell, D. G. Voelz, “Nonconventional laser imaging using sampled-aperture receivers,” Opt. Photon. News 3:4, 8–15 (1992).
[CrossRef]

Jones, H. M.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

Jones, L. R.

Klooster, A.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Kozma, A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

Majewski, R. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Marron, J. C.

Mathur, N. C.

G. W. Swenson, N. C. Mathur, “The interferometer in radio astronomy,” Proc. IEEE 56, 2114–2130 (1968).
[CrossRef]

Moore, R. K.

F. T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing (Addison-Wesley, Reading, Mass., 1982).

Moore, T. G.

T. G. Moore, “A new algorithm for the formation of ISAR images,” IEEE Trans. Aerosp. Electron. Syst. 32, 714–721 (1996).
[CrossRef]

Peterson, L. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Poggio, E. C.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

Schirinzi, G.

G. Franceschetti, G. Schirinzi, “A SAR processor based on two-dimensional FFT codes,” IEEE Trans. Aerosp. Electron. Syst. 26, 356–366 (1990).
[CrossRef]

Schroeder, K. S.

J. C. Marron, K. S. Schroeder, “Three-dimensional lensless imaging using laser frequency diversity,” Appl. Opt. 31, 255–262 (1992).
[CrossRef] [PubMed]

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Swenson, G. W.

G. W. Swenson, N. C. Mathur, “The interferometer in radio astronomy,” Proc. IEEE 56, 2114–2130 (1968).
[CrossRef]

Tai, A. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Ulaby, F. T.

F. T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing (Addison-Wesley, Reading, Mass., 1982).

Voelz, D. G.

P. S. Idell, D. G. Voelz, “Nonconventional laser imaging using sampled-aperture receivers,” Opt. Photon. News 3:4, 8–15 (1992).
[CrossRef]

Walker, J. L.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst. AES-16, 23–52 (1980).
[CrossRef]

Wiley, C. A.

C. A. Wiley, “Synthetic aperture radars,” IEEE Trans. Aerosp. Electron. Syst. AES-21, 440–443 (1985).
[CrossRef]

Wu, H.

H. Wu, G. Y. Delisle, “Precision tracking algorithms for ISAR imaging,” IEEE Trans. Aerosp. Electron. Syst. 32, 243–254 (1996).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Aerosp. Electron. Syst. (8)

A. D. Cenzo, “A new look at nonseparable synthetic aperture radar processing,” IEEE Trans. Aerosp. Electron. Syst. 24, 218–224 (1988).
[CrossRef]

G. Franceschetti, G. Schirinzi, “A SAR processor based on two-dimensional FFT codes,” IEEE Trans. Aerosp. Electron. Syst. 26, 356–366 (1990).
[CrossRef]

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

C. A. Wiley, “Synthetic aperture radars,” IEEE Trans. Aerosp. Electron. Syst. AES-21, 440–443 (1985).
[CrossRef]

W. M. Brown, R. J. Fredricks, “Range-Doppler imaging with motion through resolution cells,” IEEE Trans. Aerosp. Electron. Syst. AES-5, 98–102 (1969).
[CrossRef]

J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst. AES-16, 23–52 (1980).
[CrossRef]

H. Wu, G. Y. Delisle, “Precision tracking algorithms for ISAR imaging,” IEEE Trans. Aerosp. Electron. Syst. 32, 243–254 (1996).
[CrossRef]

T. G. Moore, “A new algorithm for the formation of ISAR images,” IEEE Trans. Aerosp. Electron. Syst. 32, 714–721 (1996).
[CrossRef]

Opt. Eng. (1)

J. R. Fienup, “Gradient-search phase-retrieval algorithm for inverse synthetic-aperture radar,” Opt. Eng. 33, 3237–3242 (1994).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

P. S. Idell, D. G. Voelz, “Nonconventional laser imaging using sampled-aperture receivers,” Opt. Photon. News 3:4, 8–15 (1992).
[CrossRef]

Proc. IEEE (1)

G. W. Swenson, N. C. Mathur, “The interferometer in radio astronomy,” Proc. IEEE 56, 2114–2130 (1968).
[CrossRef]

Other (4)

C. van Schooneveld, ed., Image Formation from Coherence Functions in Astronomy, in Proceedings of the International Astronomical Union Colloquium No. 49 (Reidel, Dordrecht, The Netherlands, 1979).

L. J. Cutrona, “Synthetic aperture radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, New York, 1970).

F. T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing (Addison-Wesley, Reading, Mass., 1982).

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. SPIE783, 29–40 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Concept of data acquisition by a single-aperture SAILR. The receiving aperture scans the xy plane within an observation area assumed to be much smaller than the object range.

Fig. 2
Fig. 2

Schematic diagram of a model hardware system. The phase of the reference IF signal at the correlator input was adjusted using the PLA. The correlator output reflects the phase difference between the reference wave and the signal waves scattered by the object surface.

Fig. 3
Fig. 3

Basic demonstration of the imaging process when the correlator input signals are free of noise and phase error. A three-dimensional plot (top left) and a contour plot (bottom left) of the simulated fringe pattern, that is, the normalized correlator output. An object model consisting of 16 retroreflectors (top right), and a simulated image obtained by Fourier transformation of the fringe pattern function (bottom right).

Fig. 4
Fig. 4

Simulated dependence of the image intensity and the resolution on the object range R. The image intensity is normalized by its value when R = 1 km, and the resolution is defined as the half-power width of a point target image normalized by the diameter of the receiving aperture.

Fig. 5
Fig. 5

Simulated relationship of the S/N and the resolution in the image intensity versus the S/N in the correlator output. The noise level in images is the average value of Fourier-component powers outside the object image area. The S/N in the image intensity must be greater than approximately 10 for practical imaging quality.

Fig. 6
Fig. 6

Simulated effect of the total phase error on the S/N and the resolution in the image intensity. If the standard deviation of the phase error is less than approximately 150 deg, the S/N in the image intensity exceeds 10, which is a necessary condition for practical imaging quality as shown in Fig. 5.

Fig. 7
Fig. 7

Concept of data acquisition by the SAILR with a one-dimensional aperture array for moving objects. The object is assumed to fly linearly with uniform velocity in a horizontal plane at an altitude of z 0. The array elements placed in a row receive return signal waves sequentially while the object passes through their field of view.

Fig. 8
Fig. 8

Schematic block diagram of the model hardware system. Components of only one element of the receiving part are shown for simplicity. The correlator output data are recorded as a function of t, time, and y, a coordinate variable shown in Fig. 7, for each receiving element.

Fig. 9
Fig. 9

Imaging process by the RPT correlation method for SAILR data, which is similar to that for conventional microwave SAR’s in spite of the difference in their configurations for data acquisition.

Fig. 10
Fig. 10

Demonstration of the RPT imaging process when the object model moves in the negative x direction and when errors and noise in the observation are negligible. Three-dimensional plots of correlator output calculated for the RPT (top left) and that observed for the object (bottom left) constituted by 16 point targets (top right). The image intensity distribution (bottom right) is also shown.

Fig. 11
Fig. 11

Deformation of the image for an object moving across the x axis at an angle of 30 deg. Such deformation can easily be compensated through adequate calibration and data processing.

Fig. 12
Fig. 12

Simulated image of a deep object, that is, different ranges of point targets arranged in a line at regular intervals. It is assumed that the target at extreme left is the nearest, the middle target is at the same altitude as the RPT, and the difference between the altitudes of any pair of adjacent targets is 9 m. This plot is a direct expression of the dependence of image intensity on object depth.

Fig. 13
Fig. 13

Simulated relationship of the S/N and the resolution in image intensity versus the S/N in correlator output. The noise level in images is the average value of Fourier-component powers outside the object image area, and the resolution is defined as the half-power width of a point target image (W I ) normalized by the diameter of the receiving aperture (D R ). The S/N in the image intensity must be greater than 10 to achieve practical imaging quality.

Fig. 14
Fig. 14

Simulated effect of a random part of the total phase error on the S/N and resolution in image intensity. For standard deviations of a random phase error of less than approximately 120 deg, the S/N in image intensity exceeds 10, which is a necessary condition to achieve practical imaging quality as shown in Fig. 7.

Tables (2)

Tables Icon

Table 1 Common Parameters of the SAILR System with a Single Receiving Aperture and the Object Model Assumed in the Simulations

Tables Icon

Table 2 Common Parameters of the SAILR System with a One-Dimensional Aperture Array and the Object Characteristics Assumed in the Simulations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d = z + x 2 + y 2 + z 2 1 / 2 - X 2 + Y 2 + Z 2 1 / 2 + X - x 2 + Y - y 2 + Z - z 2 1 / 2 = z 1 + 1 + x 2 + y 2 z 2 1 / 2 - Z 1 + X 2 + Y 2 Z 2 1 / 2 + 1 + X - x 2 + Y - y 2 Z 2 1 / 2 .
d Xx + Yy - X 2 + Y 2 Z + 2 z - Z .
V o t ,   y =   C o t ,   y V r t - t ,   y - y d t d y .
f V o = f C o f V r .
C o = F f C o = F f V o / f V r .

Metrics