Abstract

Droplet lasing spectroscopy has been applied to the measurement of droplet size and evaporation rate in a spray. A single droplet, doped with laser dye, was injected along the centerline of a liquid spray. Filters were used to block the strong elastic-scattering signal. The lasing emission from the doped droplet could be detected against the background with mass loadings of liquid in the spray as high as 20%. An analysis of the spectrum of droplet lasing was used to evaluate the droplet diameter. The evaporation rate of the droplet was obtained from consecutive lasing spectra that were obtained from the same droplet. An error analysis of the drop size and drop evaporation measurements was carried out and showed that accurate measurements of evaporation rates were feasible.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Renksizbulut, M. C. Yuen, “Experimental study of droplet evaporation in high-temperature air stream,” ASME J. Heat Transfer 105, 384–388 (1983).
    [CrossRef]
  2. M. C. Yuen, L. W. Chen, “Heat-transfer measurements of evaporating liquid droplets,” Int. J. Heat Mass Transfer 21, 537–542 (1978).
    [CrossRef]
  3. C. K. Law, T. Y. Xiong, C. H. Wang, “Alcohol droplet vaporization in humid air,” Int. J. Heat Mass Transfer 30, 1435–1443 (1987).
    [CrossRef]
  4. P. R. Yearling, R. D. Gould, “Experimental determination of gas-phase turbulence effects of vaporizing water and alcohol liquid droplets,” in Fluid Mechanics and Heat Transfer in Sprays, ASME Fluids Engineering Division178, 19–24 (1993).
  5. M. Birouk, C. Chauveau, B. Sarh, A. Quilgars, I. Gokalp, “Turbulence effects on the vaporization of monocomponent single droplets,” Combust. Sci. Technol. 113–114, 413–428 (1996).
    [CrossRef]
  6. V. G. McDonnell, G. S. Samuelsen, “An experimental data base for the computational fluid dynamics of reacting and nonreacting methanol sprays,” J. Fluids Eng. 117, 145–153 (1995).
    [CrossRef]
  7. R. Bazile, D. Stepowski, “Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,” Exp. Fluids 20, 1–9 (1995).
    [CrossRef]
  8. G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, W. P. Acker, “Laser diagnostics for droplet characterization—application of morphology dependent resonances,” Prog. Energy Combust. Sci. 22, 163–188 (1996).
    [CrossRef]
  9. A. Serpenguzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
    [CrossRef]
  10. M. Golombok, D. B. Pye, “Droplet sizing in fuel injections by stimulated Raman scattering,” Opt. Lett. 15, 872–874 (1990).
    [CrossRef] [PubMed]
  11. P. Chylek, “Resonance structure of Mie scattering—distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990).
    [CrossRef]
  12. L. G. Nair, “Dye lasers,” Prog. Quantum Electron. 7, 153–268 (1982).
    [CrossRef]
  13. P. C. Beaumont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
    [CrossRef]
  14. F. A. Williams, Combustion Theory (Benjamin/Cummings, Menlo Park, Calif., 1985).
  15. W. E. Ranz, W. R. Marshall, “Evaporation from drops. Part I,” Chem. Eng. Prog. 48, 141–146 (1952).
  16. W. E. Ranz, W. R. Marshall, “Evaporation from drops. Part II,” Chem. Eng. Prog. 48, 173–180 (1952).

1996 (2)

M. Birouk, C. Chauveau, B. Sarh, A. Quilgars, I. Gokalp, “Turbulence effects on the vaporization of monocomponent single droplets,” Combust. Sci. Technol. 113–114, 413–428 (1996).
[CrossRef]

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, W. P. Acker, “Laser diagnostics for droplet characterization—application of morphology dependent resonances,” Prog. Energy Combust. Sci. 22, 163–188 (1996).
[CrossRef]

1995 (2)

V. G. McDonnell, G. S. Samuelsen, “An experimental data base for the computational fluid dynamics of reacting and nonreacting methanol sprays,” J. Fluids Eng. 117, 145–153 (1995).
[CrossRef]

R. Bazile, D. Stepowski, “Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,” Exp. Fluids 20, 1–9 (1995).
[CrossRef]

1993 (1)

P. C. Beaumont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

1992 (1)

1990 (2)

1987 (1)

C. K. Law, T. Y. Xiong, C. H. Wang, “Alcohol droplet vaporization in humid air,” Int. J. Heat Mass Transfer 30, 1435–1443 (1987).
[CrossRef]

1983 (1)

M. Renksizbulut, M. C. Yuen, “Experimental study of droplet evaporation in high-temperature air stream,” ASME J. Heat Transfer 105, 384–388 (1983).
[CrossRef]

1982 (1)

L. G. Nair, “Dye lasers,” Prog. Quantum Electron. 7, 153–268 (1982).
[CrossRef]

1978 (1)

M. C. Yuen, L. W. Chen, “Heat-transfer measurements of evaporating liquid droplets,” Int. J. Heat Mass Transfer 21, 537–542 (1978).
[CrossRef]

1952 (2)

W. E. Ranz, W. R. Marshall, “Evaporation from drops. Part I,” Chem. Eng. Prog. 48, 141–146 (1952).

W. E. Ranz, W. R. Marshall, “Evaporation from drops. Part II,” Chem. Eng. Prog. 48, 173–180 (1952).

Acker, W. P.

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, W. P. Acker, “Laser diagnostics for droplet characterization—application of morphology dependent resonances,” Prog. Energy Combust. Sci. 22, 163–188 (1996).
[CrossRef]

A. Serpenguzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[CrossRef]

Bazile, R.

R. Bazile, D. Stepowski, “Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,” Exp. Fluids 20, 1–9 (1995).
[CrossRef]

Beaumont, P. C.

P. C. Beaumont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

Birouk, M.

M. Birouk, C. Chauveau, B. Sarh, A. Quilgars, I. Gokalp, “Turbulence effects on the vaporization of monocomponent single droplets,” Combust. Sci. Technol. 113–114, 413–428 (1996).
[CrossRef]

Chang, R. K.

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, W. P. Acker, “Laser diagnostics for droplet characterization—application of morphology dependent resonances,” Prog. Energy Combust. Sci. 22, 163–188 (1996).
[CrossRef]

A. Serpenguzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[CrossRef]

Chauveau, C.

M. Birouk, C. Chauveau, B. Sarh, A. Quilgars, I. Gokalp, “Turbulence effects on the vaporization of monocomponent single droplets,” Combust. Sci. Technol. 113–114, 413–428 (1996).
[CrossRef]

Chen, G.

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, W. P. Acker, “Laser diagnostics for droplet characterization—application of morphology dependent resonances,” Prog. Energy Combust. Sci. 22, 163–188 (1996).
[CrossRef]

Chen, L. W.

M. C. Yuen, L. W. Chen, “Heat-transfer measurements of evaporating liquid droplets,” Int. J. Heat Mass Transfer 21, 537–542 (1978).
[CrossRef]

Chylek, P.

Gokalp, I.

M. Birouk, C. Chauveau, B. Sarh, A. Quilgars, I. Gokalp, “Turbulence effects on the vaporization of monocomponent single droplets,” Combust. Sci. Technol. 113–114, 413–428 (1996).
[CrossRef]

Golombok, M.

Gould, R. D.

P. R. Yearling, R. D. Gould, “Experimental determination of gas-phase turbulence effects of vaporizing water and alcohol liquid droplets,” in Fluid Mechanics and Heat Transfer in Sprays, ASME Fluids Engineering Division178, 19–24 (1993).

Johnson, D. G.

P. C. Beaumont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

Law, C. K.

C. K. Law, T. Y. Xiong, C. H. Wang, “Alcohol droplet vaporization in humid air,” Int. J. Heat Mass Transfer 30, 1435–1443 (1987).
[CrossRef]

Marshall, W. R.

W. E. Ranz, W. R. Marshall, “Evaporation from drops. Part II,” Chem. Eng. Prog. 48, 173–180 (1952).

W. E. Ranz, W. R. Marshall, “Evaporation from drops. Part I,” Chem. Eng. Prog. 48, 141–146 (1952).

Mazumder, M. M.

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, W. P. Acker, “Laser diagnostics for droplet characterization—application of morphology dependent resonances,” Prog. Energy Combust. Sci. 22, 163–188 (1996).
[CrossRef]

McDonnell, V. G.

V. G. McDonnell, G. S. Samuelsen, “An experimental data base for the computational fluid dynamics of reacting and nonreacting methanol sprays,” J. Fluids Eng. 117, 145–153 (1995).
[CrossRef]

Nair, L. G.

L. G. Nair, “Dye lasers,” Prog. Quantum Electron. 7, 153–268 (1982).
[CrossRef]

Parsons, B. J.

P. C. Beaumont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

Pye, D. B.

Quilgars, A.

M. Birouk, C. Chauveau, B. Sarh, A. Quilgars, I. Gokalp, “Turbulence effects on the vaporization of monocomponent single droplets,” Combust. Sci. Technol. 113–114, 413–428 (1996).
[CrossRef]

Ranz, W. E.

W. E. Ranz, W. R. Marshall, “Evaporation from drops. Part I,” Chem. Eng. Prog. 48, 141–146 (1952).

W. E. Ranz, W. R. Marshall, “Evaporation from drops. Part II,” Chem. Eng. Prog. 48, 173–180 (1952).

Renksizbulut, M.

M. Renksizbulut, M. C. Yuen, “Experimental study of droplet evaporation in high-temperature air stream,” ASME J. Heat Transfer 105, 384–388 (1983).
[CrossRef]

Samuelsen, G. S.

V. G. McDonnell, G. S. Samuelsen, “An experimental data base for the computational fluid dynamics of reacting and nonreacting methanol sprays,” J. Fluids Eng. 117, 145–153 (1995).
[CrossRef]

Sarh, B.

M. Birouk, C. Chauveau, B. Sarh, A. Quilgars, I. Gokalp, “Turbulence effects on the vaporization of monocomponent single droplets,” Combust. Sci. Technol. 113–114, 413–428 (1996).
[CrossRef]

Serpenguzel, A.

Stepowski, D.

R. Bazile, D. Stepowski, “Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,” Exp. Fluids 20, 1–9 (1995).
[CrossRef]

Swindal, J. C.

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, W. P. Acker, “Laser diagnostics for droplet characterization—application of morphology dependent resonances,” Prog. Energy Combust. Sci. 22, 163–188 (1996).
[CrossRef]

A. Serpenguzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[CrossRef]

Wang, C. H.

C. K. Law, T. Y. Xiong, C. H. Wang, “Alcohol droplet vaporization in humid air,” Int. J. Heat Mass Transfer 30, 1435–1443 (1987).
[CrossRef]

Williams, F. A.

F. A. Williams, Combustion Theory (Benjamin/Cummings, Menlo Park, Calif., 1985).

Xiong, T. Y.

C. K. Law, T. Y. Xiong, C. H. Wang, “Alcohol droplet vaporization in humid air,” Int. J. Heat Mass Transfer 30, 1435–1443 (1987).
[CrossRef]

Yearling, P. R.

P. R. Yearling, R. D. Gould, “Experimental determination of gas-phase turbulence effects of vaporizing water and alcohol liquid droplets,” in Fluid Mechanics and Heat Transfer in Sprays, ASME Fluids Engineering Division178, 19–24 (1993).

Yuen, M. C.

M. Renksizbulut, M. C. Yuen, “Experimental study of droplet evaporation in high-temperature air stream,” ASME J. Heat Transfer 105, 384–388 (1983).
[CrossRef]

M. C. Yuen, L. W. Chen, “Heat-transfer measurements of evaporating liquid droplets,” Int. J. Heat Mass Transfer 21, 537–542 (1978).
[CrossRef]

Appl. Opt. (1)

ASME J. Heat Transfer (1)

M. Renksizbulut, M. C. Yuen, “Experimental study of droplet evaporation in high-temperature air stream,” ASME J. Heat Transfer 105, 384–388 (1983).
[CrossRef]

Chem. Eng. Prog. (2)

W. E. Ranz, W. R. Marshall, “Evaporation from drops. Part I,” Chem. Eng. Prog. 48, 141–146 (1952).

W. E. Ranz, W. R. Marshall, “Evaporation from drops. Part II,” Chem. Eng. Prog. 48, 173–180 (1952).

Combust. Sci. Technol. (1)

M. Birouk, C. Chauveau, B. Sarh, A. Quilgars, I. Gokalp, “Turbulence effects on the vaporization of monocomponent single droplets,” Combust. Sci. Technol. 113–114, 413–428 (1996).
[CrossRef]

Exp. Fluids (1)

R. Bazile, D. Stepowski, “Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,” Exp. Fluids 20, 1–9 (1995).
[CrossRef]

Int. J. Heat Mass Transfer (2)

M. C. Yuen, L. W. Chen, “Heat-transfer measurements of evaporating liquid droplets,” Int. J. Heat Mass Transfer 21, 537–542 (1978).
[CrossRef]

C. K. Law, T. Y. Xiong, C. H. Wang, “Alcohol droplet vaporization in humid air,” Int. J. Heat Mass Transfer 30, 1435–1443 (1987).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

P. C. Beaumont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond laser flash photolysis studies of Rhodamine 6G, Rhodamine B and Rhodamine 101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

J. Fluids Eng. (1)

V. G. McDonnell, G. S. Samuelsen, “An experimental data base for the computational fluid dynamics of reacting and nonreacting methanol sprays,” J. Fluids Eng. 117, 145–153 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Prog. Energy Combust. Sci. (1)

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, W. P. Acker, “Laser diagnostics for droplet characterization—application of morphology dependent resonances,” Prog. Energy Combust. Sci. 22, 163–188 (1996).
[CrossRef]

Prog. Quantum Electron. (1)

L. G. Nair, “Dye lasers,” Prog. Quantum Electron. 7, 153–268 (1982).
[CrossRef]

Other (2)

P. R. Yearling, R. D. Gould, “Experimental determination of gas-phase turbulence effects of vaporizing water and alcohol liquid droplets,” in Fluid Mechanics and Heat Transfer in Sprays, ASME Fluids Engineering Division178, 19–24 (1993).

F. A. Williams, Combustion Theory (Benjamin/Cummings, Menlo Park, Calif., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spray and droplet apparatus.

Fig. 2
Fig. 2

Average velocity vectors of droplets at the exit of the nozzle.

Fig. 3
Fig. 3

Imaging system for droplet lasing. fl, focal length.

Fig. 4
Fig. 4

Lasing spectrum for 62-μm-diameter droplet in a spray with a mass loading of 20%.

Fig. 5
Fig. 5

Lasing spectrum for 41-μm-diameter droplet in a spray with a mass loading of 20%.

Fig. 6
Fig. 6

Error in measurement of droplet size that is due to index of refraction variations.

Fig. 7
Fig. 7

Double-pulse spectra of a 36-μm-diameter ethanol droplet moving 10 m/s with 100-μs pulse separation in a spray with 20% mass loading.

Fig. 8
Fig. 8

Magnified view of a single peak shifting because of droplet vaporization in the spray. First laser shot peaks at 606.9 nm (dotted curve). Second laser shot peaks at 606.6 nm (solid curve).

Fig. 9
Fig. 9

Two pairs of spectra, from two droplets, recorded during the exposure of one frame of the CCD camera. The spectra were separated by equal spatial intervals on the detector that were equivalent to equal time intervals between spectra, given the laminar nature of the droplet stream. Each spectrum in the vertical direction was obtained at progressively later times, with a separation of approximately 100 μs.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ n + 1 - λ n = λ n λ n + 1 2 π R tan - 1 m 2 - 1 1 / 2 m 2 - 1 1 / 2 ,
D = 2 R = λ n λ n + 1 Δ λ π tan - 1 m 2 - 1 1 / 2 m 2 - 1 1 / 2 .
d D D = d Δ λ Δ λ ,
d D D = d Δ λ π D λ n λ n + 1 m 2 - 1 tan - 1 m 2 - 1 ,
d D D = CD ,
%   error = 0.1063 × 10 6 D + 1 .
D     tan - 1 m 2 - 1 m 2 - 1 .
Δ λ shift λ n = Δ R R .
d Δ R Δ R = d Δ λ shift Δ λ shift .
i = i 0 exp - ε ML ,
Q = m d Cp Δ T ,
K = 8 k g   ln 1 + B C p g ρ f 1 + 0.3   Re 1 / 2   Pr 1 / 3 ,

Metrics