Abstract

An atmospheric-correction method appropriate for high-spatial-resolution sensors that uses cloud-shaded pixels together with pixels in a neighboring region of similar optical properties is described. This cloud-shadow method uses the difference between the total radiance values observed at the sensor for these two regions, thus removing the nearly identical atmospheric radiance contributions to the two signals (e.g., path radiance and Fresnel-reflected skylight). What remains is largely due to solar photons backscattered from beneath the sea to dominate the residual signal. Normalization by the direct solar irradiance reaching the sea surface and correction for some second-order effects provides the remote-sensing reflectance of the ocean at the location of the neighbor region, providing a known ground target spectrum for use in testing the calibration of the sensor.

A similar approach may be useful for land targets if horizontal homogeneity of scene reflectance exists about the shadow. Monte Carlo calculations have been used to correct for adjacency effects and to estimate the differences in the skylight reaching the shadowed and neighbor pixels.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
    [Crossref] [PubMed]
  2. H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the oceans in the visible,” Remote Sensing Environ. 22, 103–126 (1987).
    [Crossref]
  3. W. A. Hovis, J. S. Knoll, G. R. Smith, “Aircraft measurements for calibration of an orbiting spacecraft sensor,” Appl. Opt. 24, 407–410 (1985).
    [Crossref] [PubMed]
  4. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
    [Crossref]
  5. K. L. Carder, P. Reinersman, R. G. Steward, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sensing Environ. 44, 205–216 (1993).
    [Crossref]
  6. R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993).
    [Crossref]
  7. H. Gordon, D. Clark, J. Brown, O. Brown, R. Evans, W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
    [Crossref] [PubMed]
  8. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
    [Crossref] [PubMed]
  9. D. Tanre, M. Herman, P. Dechamps, “Influence of the background contribution upon space measurements of ground reflectance,” Appl. Opt. 20, 3676–3684 (1981).
    [Crossref] [PubMed]
  10. F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “User’s guide to LOWTRAN-7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  11. P. N. Reinersman, K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34, 4453–4471 (1995).
    [Crossref] [PubMed]
  12. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km,” Rep. AFCRL-68-0153 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).
  13. W. Gregg, K. Carder, “A simple spectral solar irradiance model for cloudless maritime atmosphere,” Limnol. Oceanogr. 35, 1657–1675 (1990).
    [Crossref]
  14. S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93, 9270–9280 (1988).
    [Crossref]
  15. H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 A.,” Sol. Phys. 90, 205–258 (1984).
    [Crossref]
  16. C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [Crossref]
  17. C. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, T. G. Floppini, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
    [Crossref] [PubMed]
  18. H. R. Gordon, “Ship perturbation of irradiance measurements at sea. 1: Monte Carlo simulations,” Appl. Opt. 24, 4172–4182 (1985).
    [Crossref] [PubMed]
  19. J. Li, D. J. W. Geldart, P. Chylek, “Solar radiative transfer in clouds with vertical internal inhomogeneity,” J. Atmos. Sci. 51, 2542–2552 (1994).
    [Crossref]
  20. H. W. Barker, “Solar radiative transfer for wind-sheared cumulus cloud fields,” J. Atmos. Sci. 51, 1141–1156 (1994).
    [Crossref]

1995 (1)

1994 (2)

J. Li, D. J. W. Geldart, P. Chylek, “Solar radiative transfer in clouds with vertical internal inhomogeneity,” J. Atmos. Sci. 51, 2542–2552 (1994).
[Crossref]

H. W. Barker, “Solar radiative transfer for wind-sheared cumulus cloud fields,” J. Atmos. Sci. 51, 1141–1156 (1994).
[Crossref]

1993 (2)

C. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, T. G. Floppini, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[Crossref] [PubMed]

K. L. Carder, P. Reinersman, R. G. Steward, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sensing Environ. 44, 205–216 (1993).
[Crossref]

1990 (1)

W. Gregg, K. Carder, “A simple spectral solar irradiance model for cloudless maritime atmosphere,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[Crossref]

1988 (1)

S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93, 9270–9280 (1988).
[Crossref]

1987 (1)

H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the oceans in the visible,” Remote Sensing Environ. 22, 103–126 (1987).
[Crossref]

1985 (2)

1984 (1)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 A.,” Sol. Phys. 90, 205–258 (1984).
[Crossref]

1983 (2)

1981 (2)

1954 (1)

Abreu, L.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “User’s guide to LOWTRAN-7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Anderson, G.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “User’s guide to LOWTRAN-7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Barker, H. W.

H. W. Barker, “Solar radiative transfer for wind-sheared cumulus cloud fields,” J. Atmos. Sci. 51, 1141–1156 (1994).
[Crossref]

Broenkow, W.

Broenkow, W. W.

Brown, J.

Brown, J. W.

Brown, O.

Brown, O. B.

Carder, K.

W. Gregg, K. Carder, “A simple spectral solar irradiance model for cloudless maritime atmosphere,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[Crossref]

Carder, K. L.

P. N. Reinersman, K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34, 4453–4471 (1995).
[Crossref] [PubMed]

K. L. Carder, P. Reinersman, R. G. Steward, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sensing Environ. 44, 205–216 (1993).
[Crossref]

Chen, R. F.

K. L. Carder, P. Reinersman, R. G. Steward, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sensing Environ. 44, 205–216 (1993).
[Crossref]

Chetwynd, J.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “User’s guide to LOWTRAN-7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Chovit, C.

R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993).
[Crossref]

Chrien, T. G.

R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993).
[Crossref]

Chylek, P.

J. Li, D. J. W. Geldart, P. Chylek, “Solar radiative transfer in clouds with vertical internal inhomogeneity,” J. Atmos. Sci. 51, 2542–2552 (1994).
[Crossref]

Clark, D.

Clark, D. K.

Clough, S.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “User’s guide to LOWTRAN-7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Cox, C.

Davis, C. O.

K. L. Carder, P. Reinersman, R. G. Steward, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sensing Environ. 44, 205–216 (1993).
[Crossref]

Dechamps, P.

Eastwood, M. L.

R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993).
[Crossref]

Elterman, L.

L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km,” Rep. AFCRL-68-0153 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).

Eng, B. T.

R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993).
[Crossref]

Evans, R.

Evans, R. H.

Floppini, T. G.

Gallery, W.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “User’s guide to LOWTRAN-7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Geldart, D. J. W.

J. Li, D. J. W. Geldart, P. Chylek, “Solar radiative transfer in clouds with vertical internal inhomogeneity,” J. Atmos. Sci. 51, 2542–2552 (1994).
[Crossref]

Gentili, B.

Gordon, H.

Gordon, H. R.

Green, R. O.

R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993).
[Crossref]

Gregg, W.

W. Gregg, K. Carder, “A simple spectral solar irradiance model for cloudless maritime atmosphere,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[Crossref]

Hamilton, M.

K. L. Carder, P. Reinersman, R. G. Steward, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sensing Environ. 44, 205–216 (1993).
[Crossref]

Herman, M.

Hovis, W. A.

Jin, Z.

Kattawar, G. W.

Kneizys, F.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “User’s guide to LOWTRAN-7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Knoll, J. S.

Labs, D.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 A.,” Sol. Phys. 90, 205–258 (1984).
[Crossref]

Li, J.

J. Li, D. J. W. Geldart, P. Chylek, “Solar radiative transfer in clouds with vertical internal inhomogeneity,” J. Atmos. Sci. 51, 2542–2552 (1994).
[Crossref]

Mobley, C.

Morel, A.

Morel, A. Y.

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[Crossref]

Muller-Karger, F.

K. L. Carder, P. Reinersman, R. G. Steward, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sensing Environ. 44, 205–216 (1993).
[Crossref]

Munk, W.

Murray, A. T.

R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993).
[Crossref]

Neckel, H.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 A.,” Sol. Phys. 90, 205–258 (1984).
[Crossref]

Nielson, P. J.

R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993).
[Crossref]

Novack, H. I.

R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993).
[Crossref]

Platt, T.

S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93, 9270–9280 (1988).
[Crossref]

Reinersman, P.

K. L. Carder, P. Reinersman, R. G. Steward, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sensing Environ. 44, 205–216 (1993).
[Crossref]

Reinersman, P. N.

Sarture, C. M.

R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993).
[Crossref]

Sathyendranath, S.

S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93, 9270–9280 (1988).
[Crossref]

Selby, J.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “User’s guide to LOWTRAN-7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Shettle, E.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “User’s guide to LOWTRAN-7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Smith, G. R.

Stamnes, K.

Stavn, R. H.

Steward, R. G.

K. L. Carder, P. Reinersman, R. G. Steward, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sensing Environ. 44, 205–216 (1993).
[Crossref]

Tanre, D.

Appl. Opt. (8)

D. Tanre, M. Herman, P. Dechamps, “Influence of the background contribution upon space measurements of ground reflectance,” Appl. Opt. 20, 3676–3684 (1981).
[Crossref] [PubMed]

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[Crossref] [PubMed]

H. Gordon, D. Clark, J. Brown, O. Brown, R. Evans, W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[Crossref] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[Crossref] [PubMed]

W. A. Hovis, J. S. Knoll, G. R. Smith, “Aircraft measurements for calibration of an orbiting spacecraft sensor,” Appl. Opt. 24, 407–410 (1985).
[Crossref] [PubMed]

H. R. Gordon, “Ship perturbation of irradiance measurements at sea. 1: Monte Carlo simulations,” Appl. Opt. 24, 4172–4182 (1985).
[Crossref] [PubMed]

P. N. Reinersman, K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34, 4453–4471 (1995).
[Crossref] [PubMed]

C. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, T. G. Floppini, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[Crossref] [PubMed]

J. Atmos. Sci. (2)

J. Li, D. J. W. Geldart, P. Chylek, “Solar radiative transfer in clouds with vertical internal inhomogeneity,” J. Atmos. Sci. 51, 2542–2552 (1994).
[Crossref]

H. W. Barker, “Solar radiative transfer for wind-sheared cumulus cloud fields,” J. Atmos. Sci. 51, 1141–1156 (1994).
[Crossref]

J. Geophys. Res. (1)

S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93, 9270–9280 (1988).
[Crossref]

J. Opt. Soc. Am. (1)

Limnol. Oceanogr. (1)

W. Gregg, K. Carder, “A simple spectral solar irradiance model for cloudless maritime atmosphere,” Limnol. Oceanogr. 35, 1657–1675 (1990).
[Crossref]

Remote Sensing Environ. (2)

K. L. Carder, P. Reinersman, R. G. Steward, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sensing Environ. 44, 205–216 (1993).
[Crossref]

H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the oceans in the visible,” Remote Sensing Environ. 22, 103–126 (1987).
[Crossref]

Sol. Phys. (1)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 A.,” Sol. Phys. 90, 205–258 (1984).
[Crossref]

Other (4)

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “User’s guide to LOWTRAN-7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[Crossref]

L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km,” Rep. AFCRL-68-0153 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).

R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Geometric demonstration scene of a paired cloud and shadow arrangement.

Fig. 2
Fig. 2

Scaling relationship between L a (780 nm) and τ a (780 nm) derived from lowtran 7.

Fig. 3
Fig. 3

σ(λ, R) from backward Monte Carlo simulation.

Fig. 4
Fig. 4

Locations of sites where the cloud-shadow method was used. Shadow and neighbor regions are marked by boxes.

Fig. 5
Fig. 5

Illustration of the convergence of the cloud-shadow calibration. Solid curve is the true R rs the dotted curve is R rs′ that would be derived if the sensor calibration had been in error by 10%. Intermediate curves indicate the iterative convergence of the cloud-shadow method.

Fig. 6
Fig. 6

Remote-sensing reflectance spectra from the bottom site neighborhood of Fig. 2 by use of conventional atmospheric-correction methods and the cloud-shadow method.

Fig. 7
Fig. 7

Remote-sensing reflectance spectra from the top site neighborhood of Fig. 2 by use of conventional atmospheric-correction methods and the cloud-shadow method.

Fig. 8
Fig. 8

Normalized downward diffuse irradiance and average cosine for diffuse irradiance in the vicinity of cloud 1 at 400 nm in Elterman’s standard atmosphere. Points lie on the surface in the vertical plane containing the Sun, cloud, and shadow center.

Fig. 9
Fig. 9

Normalized downward diffuse irradiance and average cosine for diffuse irradiance in the vicinity of cloud 1 at 400 nm in Elterman’s standard atmosphere. Points lie on the surface along a line through the center of the shadow and perpendicular to the vertical plane containing the Sun, cloud, and shadow center.

Fig. 10
Fig. 10

Normalized downward diffuse irradiance and average cosine at shadow center and neighbor regions for cloud 1 and cloud 2 embedded in Elterman’s standard atmosphere. Clear sky values represent conditions with no cloud present.

Fig. 11
Fig. 11

Same as Fig. 10, except Elterman’s aerosol is scaled so that τ a (550 nm) = 0.0375.

Fig. 12
Fig. 12

Values of the right-hand side of Eq. (A3) for cloud 1 and cloud 2 embedded in Elterman’s standard and scaled atmospheres.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

L tn = L r + L a + L ra + t d L wn ,
L ts = L r - Δ L r + L a - Δ L a + L ra - Δ L ra + t d + Δ t d L ws ,
L wn =   sky L wn +   sol L wn ,   L ws =   sky L ws ,
sky L wn =   sky L ws +   Δ sky L ws ,
L tn - L ts = Δ L r + Δ L a + Δ L ra + t d sol L wn +   Δ sky L ws - Δ t d   sky L ws .
Δ L x = ω x τ x F 0 P x θ ,   θ 0 t d / 4 π ,   x = a ,   r ,
Δ t d = t d σ L wn - L ws / L ws = t d σ sol L wn +   Δ sky L ws / sky L ws ,
σ = 1 - t b + cum R / t d .
sol L wn +   Δ sky L ws = L tn - L ts - Δ L a - Δ L r / t d 1 - σ .
ε λ i ,   λ j = ω a λ i τ a λ i P a θ ,   θ 0 ,   λ i / ω a λ j τ a λ j P a θ ,   θ 0 ,   λ j ,
S λ i ,   λ j = Δ L a λ i / Δ L a λ j = ε λ i ,   λ j F 0 λ i t d λ i / F 0 λ j t d λ j .
t d λ i 1 - σ λ i sol L wn λ i +   Δ sky L ws λ i = L tn λ i - L ts λ i - Δ L r λ i - S λ i ,   λ j L tn λ j - L ts λ j - Δ L r λ j - t d λ i 1 - σ λ i sol L wn λ j +   Δ sky L ws λ j .
Δ L a 780   nm = L tn 780   nm - L ts 780   nm - Δ L r 780   nm .
t d λ i 1 - σ λ i sol L wn λ i +   Δ sky L ws λ i = L tn λ i - L ts λ i - Δ L r λ i - S λ i ,   780   nm L tn 780   nm - L ts 780   nm - Δ L r 780   nm .
sol R rs =   sol L wn / sol E d 0 + = L w / E d 0 + = R rs ,
R rs λ =   sol L wn λ / sol E d λ .
sky R rs shadow =   sky R rs neighbor = R rs ,
Δ sky L ws = R rs sky E d 0 + neighbor - E d 0 + shadow .
Δ sky L ws / sol L wn +   Δ sky L ws = sky E d 0 + neighbor - E d 0 + shadow / sol E d 0 + neighbor + sky E d 0 + neighbor - E d 0 + shadow .

Metrics