Abstract

Relationships for the interpretation of polarization lidar observations of aerosols and thin clouds are presented. They allow for the separation of contributions to backscatter from solid and liquid phases by the use of either the classical backscatter and depolarization ratio parameters or the particulate cross-polarized backscatter cross sections. It is shown that different aerosol phases can be better separated by use of the latter coordinates. Emphasis is placed on the study of composition and phase properties of polar stratospheric aerosols.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing (Wiley Interscience, New York, 1984), p. 510.
  2. A. Weber, S. P. S. Porto, L. E. Cheesman, J. J. Barrett, “High-resolution Raman spectroscopy of gases with cw-laser excitation,” J. Opt. Soc. Am. 57, 19–28 (1967).
    [CrossRef]
  3. H. Okamoto, A. Macke, M. Quante, E. Raschke, “Modeling of backscattering by nonspherical ice particles for the interpretation of cloud radar signals at 94 GHz: an error analysis,” Beitr. Phys. Atmos. 68, 319–334 (1995).
  4. M. I. Mischenko, L. D. Travis, “Light scattering by polidispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206–7225 (1994).
    [CrossRef]
  5. C. M. R. Platt, “Transmission and reflectivity of ice clouds by active probing,” in Clouds, Their Formation, Optical Properties, and Effects, P. V. Hobbs, ed. (Academic, San Diego, Calif., 1981), pp. 407–436.
    [CrossRef]
  6. K. Sassen, “Depolarization of laser light backscattered by artificial clouds,” J. Appl. Meterol. 13, 923–933 (1974).
    [CrossRef]
  7. K. Sassen, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. 2. Angular depolarization and multiple scatter behavior,” J. Atmos. Sci. 36, 852–861 (1979).
    [CrossRef]
  8. K. Sassen, “Optical backscattering from near-spherical water, ice, and mixed phase drops,” Appl. Opt. 16, 1332–1341 (1977).
    [CrossRef] [PubMed]
  9. R. P. Turco, R. C. Whitten, O. B. Toon, “Stratospheric aerosols: observations and theory,” Rev. Geophys. Space Phys. 20, 233–279 (1982).
    [CrossRef]
  10. World Meteorological Organization, “Scientific assessment of ozone depletion” Global Ozone Research and Monitoring Project, Rep. 37 (World Meteorological Organization, Geneva, 1995).
  11. L. E. Fox, D. R. Worsnop, M. S. Zahniser, S. C. Wofsy, “Metastable phases in polar stratospheric aerosols,” Science 267, 351–355 (1995).
    [CrossRef] [PubMed]
  12. A. Tabazadeh, O. B. Toon, “The presence of metastable HNO3/H2O solid phases in the stratosphere inferred from ER-2 data,” J. Geophys. Res. 101, 9071–9078 (1996).
    [CrossRef]
  13. E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
    [CrossRef]
  14. L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Shaffner, M. C. Pitts, “Dual-polarization airborne lidar observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389–392 (1990).
    [CrossRef]
  15. G. P. Gobbi, G. Di Donfrancesco, A. Adriani, “Physical properties of stratospheric clouds during the Antarctic winter of 1995,” J. Geophys. Res. 103, 10,859–10,873 (1998).
    [CrossRef]
  16. G. P. Gobbi, “Lidar estimation of stratospheric aerosol properties: surface, volume and extinction to backscatter ratio,” J. Geophys. Res. 100, 11,219–11,235 (1995).
    [CrossRef]
  17. H. R. Pruppaker, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, The Netherlands, 1980).

1998

G. P. Gobbi, G. Di Donfrancesco, A. Adriani, “Physical properties of stratospheric clouds during the Antarctic winter of 1995,” J. Geophys. Res. 103, 10,859–10,873 (1998).
[CrossRef]

1996

A. Tabazadeh, O. B. Toon, “The presence of metastable HNO3/H2O solid phases in the stratosphere inferred from ER-2 data,” J. Geophys. Res. 101, 9071–9078 (1996).
[CrossRef]

1995

G. P. Gobbi, “Lidar estimation of stratospheric aerosol properties: surface, volume and extinction to backscatter ratio,” J. Geophys. Res. 100, 11,219–11,235 (1995).
[CrossRef]

H. Okamoto, A. Macke, M. Quante, E. Raschke, “Modeling of backscattering by nonspherical ice particles for the interpretation of cloud radar signals at 94 GHz: an error analysis,” Beitr. Phys. Atmos. 68, 319–334 (1995).

L. E. Fox, D. R. Worsnop, M. S. Zahniser, S. C. Wofsy, “Metastable phases in polar stratospheric aerosols,” Science 267, 351–355 (1995).
[CrossRef] [PubMed]

1994

1990

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Shaffner, M. C. Pitts, “Dual-polarization airborne lidar observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389–392 (1990).
[CrossRef]

1982

R. P. Turco, R. C. Whitten, O. B. Toon, “Stratospheric aerosols: observations and theory,” Rev. Geophys. Space Phys. 20, 233–279 (1982).
[CrossRef]

1979

K. Sassen, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. 2. Angular depolarization and multiple scatter behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

1977

1974

K. Sassen, “Depolarization of laser light backscattered by artificial clouds,” J. Appl. Meterol. 13, 923–933 (1974).
[CrossRef]

1967

Adriani, A.

G. P. Gobbi, G. Di Donfrancesco, A. Adriani, “Physical properties of stratospheric clouds during the Antarctic winter of 1995,” J. Geophys. Res. 103, 10,859–10,873 (1998).
[CrossRef]

Barrett, J. J.

Browell, E. V.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Butler, C. F.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Carter, A. F.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Cheesman, L. E.

Di Donfrancesco, G.

G. P. Gobbi, G. Di Donfrancesco, A. Adriani, “Physical properties of stratospheric clouds during the Antarctic winter of 1995,” J. Geophys. Res. 103, 10,859–10,873 (1998).
[CrossRef]

Fox, L. E.

L. E. Fox, D. R. Worsnop, M. S. Zahniser, S. C. Wofsy, “Metastable phases in polar stratospheric aerosols,” Science 267, 351–355 (1995).
[CrossRef] [PubMed]

Gobbi, G. P.

G. P. Gobbi, G. Di Donfrancesco, A. Adriani, “Physical properties of stratospheric clouds during the Antarctic winter of 1995,” J. Geophys. Res. 103, 10,859–10,873 (1998).
[CrossRef]

G. P. Gobbi, “Lidar estimation of stratospheric aerosol properties: surface, volume and extinction to backscatter ratio,” J. Geophys. Res. 100, 11,219–11,235 (1995).
[CrossRef]

Higdon, N. S.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Hunt, W. H.

L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Shaffner, M. C. Pitts, “Dual-polarization airborne lidar observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389–392 (1990).
[CrossRef]

Ismail, S.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Kent, G. S.

L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Shaffner, M. C. Pitts, “Dual-polarization airborne lidar observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389–392 (1990).
[CrossRef]

Klett, J. D.

H. R. Pruppaker, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, The Netherlands, 1980).

Macke, A.

H. Okamoto, A. Macke, M. Quante, E. Raschke, “Modeling of backscattering by nonspherical ice particles for the interpretation of cloud radar signals at 94 GHz: an error analysis,” Beitr. Phys. Atmos. 68, 319–334 (1995).

McCormick, M. P.

L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Shaffner, M. C. Pitts, “Dual-polarization airborne lidar observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389–392 (1990).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley Interscience, New York, 1984), p. 510.

Mischenko, M. I.

Okamoto, H.

H. Okamoto, A. Macke, M. Quante, E. Raschke, “Modeling of backscattering by nonspherical ice particles for the interpretation of cloud radar signals at 94 GHz: an error analysis,” Beitr. Phys. Atmos. 68, 319–334 (1995).

Osborn, M. T.

L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Shaffner, M. C. Pitts, “Dual-polarization airborne lidar observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389–392 (1990).
[CrossRef]

Pitts, M. C.

L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Shaffner, M. C. Pitts, “Dual-polarization airborne lidar observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389–392 (1990).
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, “Transmission and reflectivity of ice clouds by active probing,” in Clouds, Their Formation, Optical Properties, and Effects, P. V. Hobbs, ed. (Academic, San Diego, Calif., 1981), pp. 407–436.
[CrossRef]

Poole, L. R.

L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Shaffner, M. C. Pitts, “Dual-polarization airborne lidar observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389–392 (1990).
[CrossRef]

Porto, S. P. S.

Pruppaker, H. R.

H. R. Pruppaker, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, The Netherlands, 1980).

Quante, M.

H. Okamoto, A. Macke, M. Quante, E. Raschke, “Modeling of backscattering by nonspherical ice particles for the interpretation of cloud radar signals at 94 GHz: an error analysis,” Beitr. Phys. Atmos. 68, 319–334 (1995).

Raschke, E.

H. Okamoto, A. Macke, M. Quante, E. Raschke, “Modeling of backscattering by nonspherical ice particles for the interpretation of cloud radar signals at 94 GHz: an error analysis,” Beitr. Phys. Atmos. 68, 319–334 (1995).

Robinette, P. A.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Sassen, K.

K. Sassen, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. 2. Angular depolarization and multiple scatter behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

K. Sassen, “Optical backscattering from near-spherical water, ice, and mixed phase drops,” Appl. Opt. 16, 1332–1341 (1977).
[CrossRef] [PubMed]

K. Sassen, “Depolarization of laser light backscattered by artificial clouds,” J. Appl. Meterol. 13, 923–933 (1974).
[CrossRef]

Shaffner, S.

L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Shaffner, M. C. Pitts, “Dual-polarization airborne lidar observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389–392 (1990).
[CrossRef]

Shoeberl, M. R.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Tabazadeh, A.

A. Tabazadeh, O. B. Toon, “The presence of metastable HNO3/H2O solid phases in the stratosphere inferred from ER-2 data,” J. Geophys. Res. 101, 9071–9078 (1996).
[CrossRef]

Toon, O. B.

A. Tabazadeh, O. B. Toon, “The presence of metastable HNO3/H2O solid phases in the stratosphere inferred from ER-2 data,” J. Geophys. Res. 101, 9071–9078 (1996).
[CrossRef]

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

R. P. Turco, R. C. Whitten, O. B. Toon, “Stratospheric aerosols: observations and theory,” Rev. Geophys. Space Phys. 20, 233–279 (1982).
[CrossRef]

Travis, L. D.

Tuck, A. F.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

Turco, R. P.

R. P. Turco, R. C. Whitten, O. B. Toon, “Stratospheric aerosols: observations and theory,” Rev. Geophys. Space Phys. 20, 233–279 (1982).
[CrossRef]

Weber, A.

Whitten, R. C.

R. P. Turco, R. C. Whitten, O. B. Toon, “Stratospheric aerosols: observations and theory,” Rev. Geophys. Space Phys. 20, 233–279 (1982).
[CrossRef]

Wofsy, S. C.

L. E. Fox, D. R. Worsnop, M. S. Zahniser, S. C. Wofsy, “Metastable phases in polar stratospheric aerosols,” Science 267, 351–355 (1995).
[CrossRef] [PubMed]

Worsnop, D. R.

L. E. Fox, D. R. Worsnop, M. S. Zahniser, S. C. Wofsy, “Metastable phases in polar stratospheric aerosols,” Science 267, 351–355 (1995).
[CrossRef] [PubMed]

Zahniser, M. S.

L. E. Fox, D. R. Worsnop, M. S. Zahniser, S. C. Wofsy, “Metastable phases in polar stratospheric aerosols,” Science 267, 351–355 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Beitr. Phys. Atmos.

H. Okamoto, A. Macke, M. Quante, E. Raschke, “Modeling of backscattering by nonspherical ice particles for the interpretation of cloud radar signals at 94 GHz: an error analysis,” Beitr. Phys. Atmos. 68, 319–334 (1995).

Geophys. Res. Lett.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Shoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime Arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990).
[CrossRef]

L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Shaffner, M. C. Pitts, “Dual-polarization airborne lidar observations of polar stratospheric cloud evolution,” Geophys. Res. Lett. 17, 389–392 (1990).
[CrossRef]

J. Appl. Meterol.

K. Sassen, “Depolarization of laser light backscattered by artificial clouds,” J. Appl. Meterol. 13, 923–933 (1974).
[CrossRef]

J. Atmos. Sci.

K. Sassen, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. 2. Angular depolarization and multiple scatter behavior,” J. Atmos. Sci. 36, 852–861 (1979).
[CrossRef]

J. Geophys. Res.

G. P. Gobbi, G. Di Donfrancesco, A. Adriani, “Physical properties of stratospheric clouds during the Antarctic winter of 1995,” J. Geophys. Res. 103, 10,859–10,873 (1998).
[CrossRef]

G. P. Gobbi, “Lidar estimation of stratospheric aerosol properties: surface, volume and extinction to backscatter ratio,” J. Geophys. Res. 100, 11,219–11,235 (1995).
[CrossRef]

A. Tabazadeh, O. B. Toon, “The presence of metastable HNO3/H2O solid phases in the stratosphere inferred from ER-2 data,” J. Geophys. Res. 101, 9071–9078 (1996).
[CrossRef]

J. Opt. Soc. Am.

Rev. Geophys. Space Phys.

R. P. Turco, R. C. Whitten, O. B. Toon, “Stratospheric aerosols: observations and theory,” Rev. Geophys. Space Phys. 20, 233–279 (1982).
[CrossRef]

Science

L. E. Fox, D. R. Worsnop, M. S. Zahniser, S. C. Wofsy, “Metastable phases in polar stratospheric aerosols,” Science 267, 351–355 (1995).
[CrossRef] [PubMed]

Other

R. M. Measures, Laser Remote Sensing (Wiley Interscience, New York, 1984), p. 510.

C. M. R. Platt, “Transmission and reflectivity of ice clouds by active probing,” in Clouds, Their Formation, Optical Properties, and Effects, P. V. Hobbs, ed. (Academic, San Diego, Calif., 1981), pp. 407–436.
[CrossRef]

World Meteorological Organization, “Scientific assessment of ozone depletion” Global Ozone Research and Monitoring Project, Rep. 37 (World Meteorological Organization, Geneva, 1995).

H. R. Pruppaker, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, The Netherlands, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Schematic of backscatter cross-sectional boundaries (thin-line polygons with labels) for various phases and compositions of polar stratospheric aerosols in PCC coordinates as obtained by Gobbi et al.15 The presence of solid, depolarizing particles is revealed by the increase of β c above liquid-sulfate background values. The growth of liquid supercooled ternary solutions (STS) leads to increased β s values to approximately 1 order of magnitude along the β s + β c// axis. Mixed-phase PSC’s containing STS and HNO3-based solids as nitric acid trihydrate (NAT) and metastable solid phases (MSP) extend from the STS region along the β c axis. All pure solid phases (from sulfates to ice) grow along a quasi-constant 50% slope to the top left of the mixed phases. Full nucleation of aerosols into ice crystals leads to the largest cross sections along the 50% slope. In mixed phases containing ice the liquid component departs from the 50% slope by typical STS cross-sectional values. Two 50% slopes (thick solid curves), one crossing the x axis at β s + β c// = 0 and the second at β s + β c = 6 × 10-9 (maximum cross section reached by STS) bracket the region of growth of polar stratospheric aerosols.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R = β m // x + β a // / β m // ,
D = S / S // = β m + β a / β m // + β a // ,
β a = β s + β c = β s + β c + β c // ,
D c = β c / β c // = k .
β c = β c × k / 1 + k ,
R = β m // + β s + β c // / β m // ,
D = β c + 0.014 × β m // / β m // + β s + β c // = k × β c // / β m // + 0.014 / R = 0.014 + k × R - 1 - β s / β m // / R .
β s / β m // = R - 1 - R × D - 0.014 / k .
β c / β m // = 1 + k / k R × D - 0.014 .
β s / β c = 1 / 1 + k k R - 1 / R × D - 0.014 - 1 .
β c = a × k / 1 + k + a × β s + β c // = C × β s + β c // .
β s = β s + β c // - β c / k ,
β c = β c × 1 + k / k .

Metrics