Abstract

We develop a method for forming squint-free wideband nulls in the antenna pattern of an ultrawideband array antenna. The technique uses an optical dispersive-prism beam former to provide time-delayed microwave signals to each antenna element for forming a squint-free main beam. The amplitude-modulated optical carrier is propagated through a set of optical links. Each link feeds an array element and includes an amount of dispersion proportional to element position. Tuning the wavelength of the optical carrier controls the microwave signal’s arrival-time delay gradient across the array. A dispersive-prism tapped delay-line microwave filter is used to frequency shape a nulling signal. The wideband nulls do not significantly distort the main beam and are steered independently of the main beam. The technique is applied to sidelobe nulling for a transmitter and for jammer suppression for a receiver array.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Riza, ed., Selected Papers on Photonic Control Systems for Phased Array Antennas, Vol. MS 136 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1997).
  2. M. Y. Frankel, R. D. Esman, “True time-delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Technol. 43, 2387–2394 (1995).
    [CrossRef]
  3. M. Y. Frankel, P. J. Matthews, R. D. Esman, “Two-dimensional fiber-optic control of a true time-steered array transmitter,” IEEE Trans. Microwave Theory Technol. 44, 2696–2702 (1996).
    [CrossRef]
  4. M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Technol. 45, 1522–1526 (1997).
    [CrossRef]
  5. K. Wagner, S. Kraut, L. Griffiths, S. Weaver, R. T. Weverka, A. W. Sarto, “Efficient true-time-delay adaptive-array processing,” in Radar Processing, Technology, and Applications, W. J. Miceli, ed., Proc. SPIE2845, 287–300 (1996).
    [CrossRef]
  6. M. E. Turbyfill, J. M. Lutsko, E. K. Walge, R. J. Berinato, M. C. Budge, “Acousto-optic processor for jammer suppression in land-based radars,” in Radar Sensor Technology, G. S. Ustach, ed., Proc. SPIE2747, 86–97 (1996).
    [CrossRef]
  7. R. J. Mailloux, Phased Array Antenna Handbook (Artech, Norwood, Mass., 1994).
  8. J. E. Roman, M. Y. Frankel, P. J. Matthews, R. D. Esman, “Time-steered array with a chirped grating beamformer,” Electron. Lett. 33, 652–653 (1997).
    [CrossRef]
  9. M. Y. Frankel, R. D. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photon. Technol. Lett. 7, 191–193 (1995).
    [CrossRef]
  10. B. Christensen, J. Mark, G. Jacobsen, E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
    [CrossRef]
  11. P. M. Eyring, “Compact DF antenna delivers high AOA accuracy,” Microwaves RF 36(6), 61–68 (1997).

1997

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Technol. 45, 1522–1526 (1997).
[CrossRef]

J. E. Roman, M. Y. Frankel, P. J. Matthews, R. D. Esman, “Time-steered array with a chirped grating beamformer,” Electron. Lett. 33, 652–653 (1997).
[CrossRef]

P. M. Eyring, “Compact DF antenna delivers high AOA accuracy,” Microwaves RF 36(6), 61–68 (1997).

1996

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Two-dimensional fiber-optic control of a true time-steered array transmitter,” IEEE Trans. Microwave Theory Technol. 44, 2696–2702 (1996).
[CrossRef]

1995

M. Y. Frankel, R. D. Esman, “True time-delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Technol. 43, 2387–2394 (1995).
[CrossRef]

M. Y. Frankel, R. D. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photon. Technol. Lett. 7, 191–193 (1995).
[CrossRef]

1993

B. Christensen, J. Mark, G. Jacobsen, E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Berinato, R. J.

M. E. Turbyfill, J. M. Lutsko, E. K. Walge, R. J. Berinato, M. C. Budge, “Acousto-optic processor for jammer suppression in land-based radars,” in Radar Sensor Technology, G. S. Ustach, ed., Proc. SPIE2747, 86–97 (1996).
[CrossRef]

Bodtker, E.

B. Christensen, J. Mark, G. Jacobsen, E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Budge, M. C.

M. E. Turbyfill, J. M. Lutsko, E. K. Walge, R. J. Berinato, M. C. Budge, “Acousto-optic processor for jammer suppression in land-based radars,” in Radar Sensor Technology, G. S. Ustach, ed., Proc. SPIE2747, 86–97 (1996).
[CrossRef]

Christensen, B.

B. Christensen, J. Mark, G. Jacobsen, E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Esman, R. D.

J. E. Roman, M. Y. Frankel, P. J. Matthews, R. D. Esman, “Time-steered array with a chirped grating beamformer,” Electron. Lett. 33, 652–653 (1997).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Technol. 45, 1522–1526 (1997).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Two-dimensional fiber-optic control of a true time-steered array transmitter,” IEEE Trans. Microwave Theory Technol. 44, 2696–2702 (1996).
[CrossRef]

M. Y. Frankel, R. D. Esman, “True time-delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Technol. 43, 2387–2394 (1995).
[CrossRef]

M. Y. Frankel, R. D. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photon. Technol. Lett. 7, 191–193 (1995).
[CrossRef]

Eyring, P. M.

P. M. Eyring, “Compact DF antenna delivers high AOA accuracy,” Microwaves RF 36(6), 61–68 (1997).

Frankel, M. Y.

J. E. Roman, M. Y. Frankel, P. J. Matthews, R. D. Esman, “Time-steered array with a chirped grating beamformer,” Electron. Lett. 33, 652–653 (1997).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Technol. 45, 1522–1526 (1997).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Two-dimensional fiber-optic control of a true time-steered array transmitter,” IEEE Trans. Microwave Theory Technol. 44, 2696–2702 (1996).
[CrossRef]

M. Y. Frankel, R. D. Esman, “True time-delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Technol. 43, 2387–2394 (1995).
[CrossRef]

M. Y. Frankel, R. D. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photon. Technol. Lett. 7, 191–193 (1995).
[CrossRef]

Griffiths, L.

K. Wagner, S. Kraut, L. Griffiths, S. Weaver, R. T. Weverka, A. W. Sarto, “Efficient true-time-delay adaptive-array processing,” in Radar Processing, Technology, and Applications, W. J. Miceli, ed., Proc. SPIE2845, 287–300 (1996).
[CrossRef]

Jacobsen, G.

B. Christensen, J. Mark, G. Jacobsen, E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Kraut, S.

K. Wagner, S. Kraut, L. Griffiths, S. Weaver, R. T. Weverka, A. W. Sarto, “Efficient true-time-delay adaptive-array processing,” in Radar Processing, Technology, and Applications, W. J. Miceli, ed., Proc. SPIE2845, 287–300 (1996).
[CrossRef]

Lutsko, J. M.

M. E. Turbyfill, J. M. Lutsko, E. K. Walge, R. J. Berinato, M. C. Budge, “Acousto-optic processor for jammer suppression in land-based radars,” in Radar Sensor Technology, G. S. Ustach, ed., Proc. SPIE2747, 86–97 (1996).
[CrossRef]

Mailloux, R. J.

R. J. Mailloux, Phased Array Antenna Handbook (Artech, Norwood, Mass., 1994).

Mark, J.

B. Christensen, J. Mark, G. Jacobsen, E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Matthews, P. J.

J. E. Roman, M. Y. Frankel, P. J. Matthews, R. D. Esman, “Time-steered array with a chirped grating beamformer,” Electron. Lett. 33, 652–653 (1997).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Technol. 45, 1522–1526 (1997).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Two-dimensional fiber-optic control of a true time-steered array transmitter,” IEEE Trans. Microwave Theory Technol. 44, 2696–2702 (1996).
[CrossRef]

Roman, J. E.

J. E. Roman, M. Y. Frankel, P. J. Matthews, R. D. Esman, “Time-steered array with a chirped grating beamformer,” Electron. Lett. 33, 652–653 (1997).
[CrossRef]

Sarto, A. W.

K. Wagner, S. Kraut, L. Griffiths, S. Weaver, R. T. Weverka, A. W. Sarto, “Efficient true-time-delay adaptive-array processing,” in Radar Processing, Technology, and Applications, W. J. Miceli, ed., Proc. SPIE2845, 287–300 (1996).
[CrossRef]

Turbyfill, M. E.

M. E. Turbyfill, J. M. Lutsko, E. K. Walge, R. J. Berinato, M. C. Budge, “Acousto-optic processor for jammer suppression in land-based radars,” in Radar Sensor Technology, G. S. Ustach, ed., Proc. SPIE2747, 86–97 (1996).
[CrossRef]

Wagner, K.

K. Wagner, S. Kraut, L. Griffiths, S. Weaver, R. T. Weverka, A. W. Sarto, “Efficient true-time-delay adaptive-array processing,” in Radar Processing, Technology, and Applications, W. J. Miceli, ed., Proc. SPIE2845, 287–300 (1996).
[CrossRef]

Walge, E. K.

M. E. Turbyfill, J. M. Lutsko, E. K. Walge, R. J. Berinato, M. C. Budge, “Acousto-optic processor for jammer suppression in land-based radars,” in Radar Sensor Technology, G. S. Ustach, ed., Proc. SPIE2747, 86–97 (1996).
[CrossRef]

Weaver, S.

K. Wagner, S. Kraut, L. Griffiths, S. Weaver, R. T. Weverka, A. W. Sarto, “Efficient true-time-delay adaptive-array processing,” in Radar Processing, Technology, and Applications, W. J. Miceli, ed., Proc. SPIE2845, 287–300 (1996).
[CrossRef]

Weverka, R. T.

K. Wagner, S. Kraut, L. Griffiths, S. Weaver, R. T. Weverka, A. W. Sarto, “Efficient true-time-delay adaptive-array processing,” in Radar Processing, Technology, and Applications, W. J. Miceli, ed., Proc. SPIE2845, 287–300 (1996).
[CrossRef]

Electron. Lett.

J. E. Roman, M. Y. Frankel, P. J. Matthews, R. D. Esman, “Time-steered array with a chirped grating beamformer,” Electron. Lett. 33, 652–653 (1997).
[CrossRef]

B. Christensen, J. Mark, G. Jacobsen, E. Bodtker, “Simple dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Y. Frankel, R. D. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photon. Technol. Lett. 7, 191–193 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Technol.

M. Y. Frankel, R. D. Esman, “True time-delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Technol. 43, 2387–2394 (1995).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Two-dimensional fiber-optic control of a true time-steered array transmitter,” IEEE Trans. Microwave Theory Technol. 44, 2696–2702 (1996).
[CrossRef]

M. Y. Frankel, P. J. Matthews, R. D. Esman, “Fiber-optic true time steering of an ultrawide-band receive array,” IEEE Trans. Microwave Theory Technol. 45, 1522–1526 (1997).
[CrossRef]

Microwaves RF

P. M. Eyring, “Compact DF antenna delivers high AOA accuracy,” Microwaves RF 36(6), 61–68 (1997).

Other

K. Wagner, S. Kraut, L. Griffiths, S. Weaver, R. T. Weverka, A. W. Sarto, “Efficient true-time-delay adaptive-array processing,” in Radar Processing, Technology, and Applications, W. J. Miceli, ed., Proc. SPIE2845, 287–300 (1996).
[CrossRef]

M. E. Turbyfill, J. M. Lutsko, E. K. Walge, R. J. Berinato, M. C. Budge, “Acousto-optic processor for jammer suppression in land-based radars,” in Radar Sensor Technology, G. S. Ustach, ed., Proc. SPIE2747, 86–97 (1996).
[CrossRef]

R. J. Mailloux, Phased Array Antenna Handbook (Artech, Norwood, Mass., 1994).

N. A. Riza, ed., Selected Papers on Photonic Control Systems for Phased Array Antennas, Vol. MS 136 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Ideal array factor pattern assuming true time-delay beam forming: (a) Array with 72 elements, 7.5 mm apart, 5–20 GHz, and the main beam at -20°. (b) Sidelobe amplitude at -10°.

Fig. 2
Fig. 2

Transmit beam-former schematic with a single broadband null former: f/o, fiber-optic; DS, dispersion shifted.

Fig. 3
Fig. 3

Main-beam array antenna pattern at 5.56 GHz and a corresponding nulling signal pattern, showing that the effect of the nulling signal is small outside the region proportional to the beamwidth because of array gain.

Fig. 4
Fig. 4

Array with 72 elements, 7.5 cm apart, 5–20 GHz, and the main beam at -20°: (a) Null at -10°. (b) Null at +30°.

Fig. 5
Fig. 5

Sidelobe and a suppressed sidelobe as a function of frequency with the main beam at +60° and the sidelobe at -60° for a 72-element array with 7.5-mm spacing.

Fig. 6
Fig. 6

Receive beam-former schematic with multiple broadband null formers.

Fig. 7
Fig. 7

Array response with a 5–20-GHz signal and a coherent jammer. The jammer (at -10°) is 20 dB higher than the signal: (a) No nulling, with the beam former looking at -20°. (b) The jam suppressor enabled at -10°, with the beam former looking at -20°.

Fig. 8
Fig. 8

Array response with a 5–20-GHz signal and an incoherent jammer. The jammer (at -10°) is 20 dB higher than the signal: (a) No nulling, with the beam former looking at -20°. (b) The jam suppressor enabled at -10°, with the beam former looking at -20°.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F u = n = N | a n | exp - j   d e c   n ω u 0 exp j   d e c   n ω u ,
τ n = d e c   u 0 n .
G filt = - 16 - 20   log V π + 20   log I dc + 20   log N ,
G disp = 20   log cos π DL λ 2 f 2 c ,
f max = c Δ λ opt 4 λ 2 N - 1 sin θ max 2 ,
| a main , filt , null n | = cos 2 π λ 0 + Δ λ main , filt , null 2 f 2 d e n   sin θ max / 2 Δ λ opt c 2 ,
Δ λ main = sin θ main sin θ max / 2 Δ λ opt 2 , Δ λ null = sin θ null sin θ max / 2 Δ λ opt 2 , Δ λ filt = Δ λ null - Δ λ main .
ϕ n = 2 π fd e n c sin θ null - sin θ main ,

Metrics