Abstract

All-optical communication requires all-optical interconnections, thus leading to reliable, fast, and flexible modular communication means in future systems. Free-space approaches are advantageous since they fully use the two dimensions optics offer. A folded architecture based on a polarization code is proposed for dynamic optical interconnection. The suggested systems are compact and appropriate for both intracomputer and intercomputer communication. The modularity of the proposed architecture is presented, and a growth rule for the fully connected versions of the system is introduced. The proposed approach significantly reduces both the price of the interconnection systems and their complexity. Presented are 4 × 4 and 8 × 8 fully connected switches, a rearrangeable nonblocking 4 × 4 switch, and a crossbar architecture.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hogari, T. Matsumoto, “Electrostatically driven micromechanical 2 by 2 optical switch,” Appl. Opt. 30, 1253–1257 (1991).
    [CrossRef] [PubMed]
  2. J. Shamir, H. J. Caulfield, W. Miceli, R. J. Seymour, “Optical computing and the Fredkin gate,” Appl. Opt. 25, 1604–1607 (1986).
    [CrossRef] [PubMed]
  3. T. Huang, Y. H. Chen, “Optical switches with a substrate-mode grating structure,” Optik (Stuttgart) 98, 1–4 (1994).
  4. R. K. Kostuk, M. Kato, Y.-T. Huang, “Polarization properties of substrate-mode holographic interconnects,” Appl. Opt. 29, 3848–3854 (1990).
    [CrossRef] [PubMed]
  5. J.-T. Chang, D.-C. Su, Y.-T. Huang, “Substrate mode holographic polarization division multi/demultiplexer for optical communications,” Appl. Opt. 33, 8143–8145 (1994).
    [CrossRef] [PubMed]
  6. K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
    [CrossRef] [PubMed]
  7. H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 35, 8137–8143 (1995).
    [CrossRef]
  8. N. Wang, L. Liu, Y. Yin, “Cantor network, control algorithm, two-dimensional compact structure and its optical implementation,” Appl. Opt. 34, 8176–8182 (1995).
    [CrossRef] [PubMed]
  9. D. M. Marom, D. Mendlovic, “Compact, all-optical bypass–exchange switch,” Appl. Opt. 35, 248–253 (1996).
    [CrossRef] [PubMed]
  10. M. Hossain, S. Ghanta, M. Guizani, “Optical realization of a Clos nonblocking broadcast switching network with constant time network control algorithms,” Appl. Opt. 32, 665–673 (1993).
    [CrossRef] [PubMed]
  11. B. Acklin, J. Jahns, “Packing considerations for planar optical interconnection systems,” Appl. Opt. 33, 1391–1397 (1994).
    [CrossRef] [PubMed]
  12. K. Noguchi, K. Hogori, T. Sakano, T. Matsumoto, “Rearrangable multichannel free-space optical switching using a polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
    [CrossRef]
  13. K. Hogari, K. Noguchi, T. Matsumoto, “Two-dimensional multichannel optical switch,” Appl. Opt. 30, 3277–3278 (1991).
    [CrossRef] [PubMed]
  14. L. R. McAdams, R. N. McRuer, J. W. Goodman, “Liquid crystal optical routing switch,” Appl. Opt. 29, 1304–1307 (1990).
    [CrossRef] [PubMed]
  15. J. E. Midwinter, Photonics in Switching (Academic, New York, 1993), Vols. 1 and 2.
  16. A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar network,” Computer 20, 50 (1987).
    [CrossRef]
  17. Y. Wu, L. Liu, Z. Wang, “Optical crossbar elements used for switching networks,” Appl. Opt. 33, 175–178 (1994).
    [CrossRef] [PubMed]
  18. D. M. Marom, D. Mendlovic, “All-optical reduced state 4 by 4 switch,” Opt. Photon. News 7(2), 43 (1996).
  19. K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystals,” Appl. Opt. 27, 1727–1733 (1988).
    [CrossRef]
  20. J. E. Ford, F. Xu, K. Urquhartand, Y. Fainman, “Polarization-selective computer-generated holograms,” Opt. Lett. 19, 456–458 (1993).
    [CrossRef]

1996 (2)

D. M. Marom, D. Mendlovic, “Compact, all-optical bypass–exchange switch,” Appl. Opt. 35, 248–253 (1996).
[CrossRef] [PubMed]

D. M. Marom, D. Mendlovic, “All-optical reduced state 4 by 4 switch,” Opt. Photon. News 7(2), 43 (1996).

1995 (2)

H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 35, 8137–8143 (1995).
[CrossRef]

N. Wang, L. Liu, Y. Yin, “Cantor network, control algorithm, two-dimensional compact structure and its optical implementation,” Appl. Opt. 34, 8176–8182 (1995).
[CrossRef] [PubMed]

1994 (4)

1993 (2)

1991 (2)

1990 (3)

1988 (2)

1987 (1)

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar network,” Computer 20, 50 (1987).
[CrossRef]

1986 (1)

Acklin, B.

Caulfield, H. J.

Chang, J.-T.

Chen, Y. H.

T. Huang, Y. H. Chen, “Optical switches with a substrate-mode grating structure,” Optik (Stuttgart) 98, 1–4 (1994).

Fainman, Y.

J. E. Ford, F. Xu, K. Urquhartand, Y. Fainman, “Polarization-selective computer-generated holograms,” Opt. Lett. 19, 456–458 (1993).
[CrossRef]

Ford, J. E.

J. E. Ford, F. Xu, K. Urquhartand, Y. Fainman, “Polarization-selective computer-generated holograms,” Opt. Lett. 19, 456–458 (1993).
[CrossRef]

Fukushima, S.

H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 35, 8137–8143 (1995).
[CrossRef]

Ghanta, S.

Goodman, J. W.

Guizani, M.

Hogari, K.

Hogori, K.

K. Noguchi, K. Hogori, T. Sakano, T. Matsumoto, “Rearrangable multichannel free-space optical switching using a polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
[CrossRef]

Hossain, M.

Huang, T.

T. Huang, Y. H. Chen, “Optical switches with a substrate-mode grating structure,” Optik (Stuttgart) 98, 1–4 (1994).

Huang, Y.-T.

Jahns, J.

Jenkins, B. K.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar network,” Computer 20, 50 (1987).
[CrossRef]

Johnson, K. M.

Kato, M.

Kostuk, R. K.

Liu, L.

Marom, D. M.

D. M. Marom, D. Mendlovic, “All-optical reduced state 4 by 4 switch,” Opt. Photon. News 7(2), 43 (1996).

D. M. Marom, D. Mendlovic, “Compact, all-optical bypass–exchange switch,” Appl. Opt. 35, 248–253 (1996).
[CrossRef] [PubMed]

Matsumoto, T.

McAdams, L. R.

McRuer, R. N.

Mendlovic, D.

D. M. Marom, D. Mendlovic, “Compact, all-optical bypass–exchange switch,” Appl. Opt. 35, 248–253 (1996).
[CrossRef] [PubMed]

D. M. Marom, D. Mendlovic, “All-optical reduced state 4 by 4 switch,” Opt. Photon. News 7(2), 43 (1996).

Miceli, W.

Midwinter, J. E.

J. E. Midwinter, Photonics in Switching (Academic, New York, 1993), Vols. 1 and 2.

Noguchi, K.

K. Hogari, K. Noguchi, T. Matsumoto, “Two-dimensional multichannel optical switch,” Appl. Opt. 30, 3277–3278 (1991).
[CrossRef] [PubMed]

K. Noguchi, K. Hogori, T. Sakano, T. Matsumoto, “Rearrangable multichannel free-space optical switching using a polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
[CrossRef]

Raghavendra, C. S.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar network,” Computer 20, 50 (1987).
[CrossRef]

Sakano, T.

K. Noguchi, K. Hogori, T. Sakano, T. Matsumoto, “Rearrangable multichannel free-space optical switching using a polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
[CrossRef]

Sawchuck, A. A.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar network,” Computer 20, 50 (1987).
[CrossRef]

Seymour, R. J.

Shamir, J.

Su, D.-C.

Surette, M. R.

Urquhartand, K.

J. E. Ford, F. Xu, K. Urquhartand, Y. Fainman, “Polarization-selective computer-generated holograms,” Opt. Lett. 19, 456–458 (1993).
[CrossRef]

Varma, A.

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar network,” Computer 20, 50 (1987).
[CrossRef]

Wang, N.

Wang, Z.

Wu, Y.

Xu, F.

J. E. Ford, F. Xu, K. Urquhartand, Y. Fainman, “Polarization-selective computer-generated holograms,” Opt. Lett. 19, 456–458 (1993).
[CrossRef]

Yamazaki, H.

H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 35, 8137–8143 (1995).
[CrossRef]

Yin, Y.

Appl. Opt. (14)

R. K. Kostuk, M. Kato, Y.-T. Huang, “Polarization properties of substrate-mode holographic interconnects,” Appl. Opt. 29, 3848–3854 (1990).
[CrossRef] [PubMed]

J.-T. Chang, D.-C. Su, Y.-T. Huang, “Substrate mode holographic polarization division multi/demultiplexer for optical communications,” Appl. Opt. 33, 8143–8145 (1994).
[CrossRef] [PubMed]

K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
[CrossRef] [PubMed]

H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 35, 8137–8143 (1995).
[CrossRef]

N. Wang, L. Liu, Y. Yin, “Cantor network, control algorithm, two-dimensional compact structure and its optical implementation,” Appl. Opt. 34, 8176–8182 (1995).
[CrossRef] [PubMed]

D. M. Marom, D. Mendlovic, “Compact, all-optical bypass–exchange switch,” Appl. Opt. 35, 248–253 (1996).
[CrossRef] [PubMed]

M. Hossain, S. Ghanta, M. Guizani, “Optical realization of a Clos nonblocking broadcast switching network with constant time network control algorithms,” Appl. Opt. 32, 665–673 (1993).
[CrossRef] [PubMed]

B. Acklin, J. Jahns, “Packing considerations for planar optical interconnection systems,” Appl. Opt. 33, 1391–1397 (1994).
[CrossRef] [PubMed]

K. Hogari, T. Matsumoto, “Electrostatically driven micromechanical 2 by 2 optical switch,” Appl. Opt. 30, 1253–1257 (1991).
[CrossRef] [PubMed]

J. Shamir, H. J. Caulfield, W. Miceli, R. J. Seymour, “Optical computing and the Fredkin gate,” Appl. Opt. 25, 1604–1607 (1986).
[CrossRef] [PubMed]

K. Hogari, K. Noguchi, T. Matsumoto, “Two-dimensional multichannel optical switch,” Appl. Opt. 30, 3277–3278 (1991).
[CrossRef] [PubMed]

L. R. McAdams, R. N. McRuer, J. W. Goodman, “Liquid crystal optical routing switch,” Appl. Opt. 29, 1304–1307 (1990).
[CrossRef] [PubMed]

Y. Wu, L. Liu, Z. Wang, “Optical crossbar elements used for switching networks,” Appl. Opt. 33, 175–178 (1994).
[CrossRef] [PubMed]

K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystals,” Appl. Opt. 27, 1727–1733 (1988).
[CrossRef]

Computer (1)

A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar network,” Computer 20, 50 (1987).
[CrossRef]

Electron. Lett. (1)

K. Noguchi, K. Hogori, T. Sakano, T. Matsumoto, “Rearrangable multichannel free-space optical switching using a polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
[CrossRef]

Opt. Lett. (1)

J. E. Ford, F. Xu, K. Urquhartand, Y. Fainman, “Polarization-selective computer-generated holograms,” Opt. Lett. 19, 456–458 (1993).
[CrossRef]

Opt. Photon. News (1)

D. M. Marom, D. Mendlovic, “All-optical reduced state 4 by 4 switch,” Opt. Photon. News 7(2), 43 (1996).

Optik (Stuttgart) (1)

T. Huang, Y. H. Chen, “Optical switches with a substrate-mode grating structure,” Optik (Stuttgart) 98, 1–4 (1994).

Other (1)

J. E. Midwinter, Photonics in Switching (Academic, New York, 1993), Vols. 1 and 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Bypass–exchange switch.

Fig. 2
Fig. 2

Structure of the bypass–exchange switch.

Fig. 3
Fig. 3

Diagrams of a 4 × 4 FSOS: (a) The physical layout; each rectangle represents a bypass–exchange switch. (b) Network representation of the switch shown in (a).

Fig. 4
Fig. 4

Folded, fully connected 4 × 4 switch (vertical cross section).

Fig. 5
Fig. 5

Three-dimensional drawing of a fully connected 4 × 4 switch. Note the indication of the different FLC pixel states with respect to the legend provided.

Fig. 6
Fig. 6

Input-polarization setup.

Fig. 7
Fig. 7

Reflection by use of lenses.

Fig. 8
Fig. 8

Reflection by use of mirrors.

Fig. 9
Fig. 9

Folded, rearrangeable, nonblocking 4 × 4 switch.

Fig. 10
Fig. 10

(a) Folded, fully connected 8 × 8 switch. (b) Network representation of the switch shown in (a).

Fig. 11
Fig. 11

Crossbar network: (a) All calcite crystals arranged in the same direction. (b) Calcite crystals arranged in alternating directions.

Fig. 12
Fig. 12

Folded crossbar network.

Fig. 13
Fig. 13

Diagram of a 4 × 4 switch used for intracomputer communication.

Tables (1)

Tables Icon

Table 1 Summary of Switching Levels Needed for the Nonfolded and the Folded Architectures

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

NL crossbar = 2 N - 1 .
dimension 2 n = 2 n / 2 × 2 n / 2 n = 2 k 2 n - 1 / 2 × 2 n + 1 / 2 n = 2 k + 1 ,
NS = 2 2 n / 2 - 1 n = 2 k 2 n - 1 / 2 + 2 n + 1 / 2 - 2 n = 2 k + 1 .
NF = NS n = 2 k NS + 1 n = 2 k + 1 .

Metrics