Abstract

We report preliminary results concerning a free-space optical switch between single-mode fibers with a ferroelectric liquid-crystal (FLC) spatial light modulator (SLM). In particular, we show experimentally that such a device can operate in a polarization-insensitive manner. The influence of the geometrical and physical features of the FLC SLM on the overall performance of the optical fiber switch are also discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jourdan, F. Masetti, M. Garnot, G. Soulage, M. Sotom, “Design and implementation of a fully reconfigurable all-optical cross-connect for high-capacity multiwavelength transport network,” J. Lightwave Technol. 14, 1198–1206 (1996).
    [CrossRef]
  2. B. Robertson, E. J. Restall, M. R. Taghizadeh, A. C. Walker, “Space-variant interconnection networks in dichromated gelatin,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 128–129 (1990).
    [CrossRef]
  3. R. C. Battig, C. C. Guest, S. R. Schaefer, D. J. Toms, “Simulated annealing of binary holograms for the interconnection of single-mode structures,” Appl. Opt. 31, 1059–1066 (1992).
    [CrossRef] [PubMed]
  4. D. C. O’Brien, R. J. Mears, T. D. Wilkinson, W. A. Crossland, “Dynamic holographic interconnects that use FLC SLM’s,” Appl. Opt. 33, 2795–2803 (1994).
  5. H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 34, 8137–8143 (1995).
    [CrossRef] [PubMed]
  6. U. Killat, G. Rabe, W. Rave, “Binary phase gratings for star couplers with high splitting ratio,” Fibre Integr. Opt. 4, 159–167 (1982).
    [CrossRef]
  7. S. T. Warr, R. J. Mears, “Polarisation insensitive diffractive FLC systems,” Ferroelectrics 181, 53–59 (1995).
    [CrossRef]
  8. P. Berthelé, H. Hamam, J.-L. de Bougrenet de la Tocnaye, “Programmable CGHs using ferroelectric liquid crystal material as phase modulators,” Ferroelectrics 181, 69–78 (1995).
    [CrossRef]
  9. J. P. Allebach, M. A. Seldowitz, D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
    [CrossRef] [PubMed]
  10. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Sys. Tech. J. 56, 703–718 (1977).
  11. The ITO layer etching was performed at the France Telecom Research Laboratories, Centre National d’Etudes en Télécommunications de Lannion, Departement Passif Intégration Hybride.
  12. P. Berthelé, B. Fracasso, J.-L. de Bougrenet de la Tocnaye, “Efficient beam steering in the 1.55 micron window using a large tilt FLC one-dimensional array,”Ferroelectrics (to be published).
  13. M. D. Wand, R. T. Vohra, W. N. Thurnes, K. M. More, “High resolution, color FLC miniature display and FLC materials optimized for their operation,”Ferroelectrics (to be published).

1996 (1)

A. Jourdan, F. Masetti, M. Garnot, G. Soulage, M. Sotom, “Design and implementation of a fully reconfigurable all-optical cross-connect for high-capacity multiwavelength transport network,” J. Lightwave Technol. 14, 1198–1206 (1996).
[CrossRef]

1995 (3)

S. T. Warr, R. J. Mears, “Polarisation insensitive diffractive FLC systems,” Ferroelectrics 181, 53–59 (1995).
[CrossRef]

P. Berthelé, H. Hamam, J.-L. de Bougrenet de la Tocnaye, “Programmable CGHs using ferroelectric liquid crystal material as phase modulators,” Ferroelectrics 181, 69–78 (1995).
[CrossRef]

H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 34, 8137–8143 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

1987 (1)

1982 (1)

U. Killat, G. Rabe, W. Rave, “Binary phase gratings for star couplers with high splitting ratio,” Fibre Integr. Opt. 4, 159–167 (1982).
[CrossRef]

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Sys. Tech. J. 56, 703–718 (1977).

Allebach, J. P.

Battig, R. C.

Berthelé, P.

P. Berthelé, H. Hamam, J.-L. de Bougrenet de la Tocnaye, “Programmable CGHs using ferroelectric liquid crystal material as phase modulators,” Ferroelectrics 181, 69–78 (1995).
[CrossRef]

P. Berthelé, B. Fracasso, J.-L. de Bougrenet de la Tocnaye, “Efficient beam steering in the 1.55 micron window using a large tilt FLC one-dimensional array,”Ferroelectrics (to be published).

Crossland, W. A.

de Bougrenet de la Tocnaye, J.-L.

P. Berthelé, H. Hamam, J.-L. de Bougrenet de la Tocnaye, “Programmable CGHs using ferroelectric liquid crystal material as phase modulators,” Ferroelectrics 181, 69–78 (1995).
[CrossRef]

Fracasso, B.

P. Berthelé, B. Fracasso, J.-L. de Bougrenet de la Tocnaye, “Efficient beam steering in the 1.55 micron window using a large tilt FLC one-dimensional array,”Ferroelectrics (to be published).

Fukushima, S.

Garnot, M.

A. Jourdan, F. Masetti, M. Garnot, G. Soulage, M. Sotom, “Design and implementation of a fully reconfigurable all-optical cross-connect for high-capacity multiwavelength transport network,” J. Lightwave Technol. 14, 1198–1206 (1996).
[CrossRef]

Guest, C. C.

Hamam, H.

P. Berthelé, H. Hamam, J.-L. de Bougrenet de la Tocnaye, “Programmable CGHs using ferroelectric liquid crystal material as phase modulators,” Ferroelectrics 181, 69–78 (1995).
[CrossRef]

Jourdan, A.

A. Jourdan, F. Masetti, M. Garnot, G. Soulage, M. Sotom, “Design and implementation of a fully reconfigurable all-optical cross-connect for high-capacity multiwavelength transport network,” J. Lightwave Technol. 14, 1198–1206 (1996).
[CrossRef]

Killat, U.

U. Killat, G. Rabe, W. Rave, “Binary phase gratings for star couplers with high splitting ratio,” Fibre Integr. Opt. 4, 159–167 (1982).
[CrossRef]

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Sys. Tech. J. 56, 703–718 (1977).

Masetti, F.

A. Jourdan, F. Masetti, M. Garnot, G. Soulage, M. Sotom, “Design and implementation of a fully reconfigurable all-optical cross-connect for high-capacity multiwavelength transport network,” J. Lightwave Technol. 14, 1198–1206 (1996).
[CrossRef]

Mears, R. J.

S. T. Warr, R. J. Mears, “Polarisation insensitive diffractive FLC systems,” Ferroelectrics 181, 53–59 (1995).
[CrossRef]

D. C. O’Brien, R. J. Mears, T. D. Wilkinson, W. A. Crossland, “Dynamic holographic interconnects that use FLC SLM’s,” Appl. Opt. 33, 2795–2803 (1994).

More, K. M.

M. D. Wand, R. T. Vohra, W. N. Thurnes, K. M. More, “High resolution, color FLC miniature display and FLC materials optimized for their operation,”Ferroelectrics (to be published).

O’Brien, D. C.

Rabe, G.

U. Killat, G. Rabe, W. Rave, “Binary phase gratings for star couplers with high splitting ratio,” Fibre Integr. Opt. 4, 159–167 (1982).
[CrossRef]

Rave, W.

U. Killat, G. Rabe, W. Rave, “Binary phase gratings for star couplers with high splitting ratio,” Fibre Integr. Opt. 4, 159–167 (1982).
[CrossRef]

Restall, E. J.

B. Robertson, E. J. Restall, M. R. Taghizadeh, A. C. Walker, “Space-variant interconnection networks in dichromated gelatin,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 128–129 (1990).
[CrossRef]

Robertson, B.

B. Robertson, E. J. Restall, M. R. Taghizadeh, A. C. Walker, “Space-variant interconnection networks in dichromated gelatin,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 128–129 (1990).
[CrossRef]

Schaefer, S. R.

Seldowitz, M. A.

Sotom, M.

A. Jourdan, F. Masetti, M. Garnot, G. Soulage, M. Sotom, “Design and implementation of a fully reconfigurable all-optical cross-connect for high-capacity multiwavelength transport network,” J. Lightwave Technol. 14, 1198–1206 (1996).
[CrossRef]

Soulage, G.

A. Jourdan, F. Masetti, M. Garnot, G. Soulage, M. Sotom, “Design and implementation of a fully reconfigurable all-optical cross-connect for high-capacity multiwavelength transport network,” J. Lightwave Technol. 14, 1198–1206 (1996).
[CrossRef]

Sweeney, D. W.

Taghizadeh, M. R.

B. Robertson, E. J. Restall, M. R. Taghizadeh, A. C. Walker, “Space-variant interconnection networks in dichromated gelatin,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 128–129 (1990).
[CrossRef]

Thurnes, W. N.

M. D. Wand, R. T. Vohra, W. N. Thurnes, K. M. More, “High resolution, color FLC miniature display and FLC materials optimized for their operation,”Ferroelectrics (to be published).

Tocnaye, J.-L. de Bougrenet de la

P. Berthelé, B. Fracasso, J.-L. de Bougrenet de la Tocnaye, “Efficient beam steering in the 1.55 micron window using a large tilt FLC one-dimensional array,”Ferroelectrics (to be published).

Toms, D. J.

Vohra, R. T.

M. D. Wand, R. T. Vohra, W. N. Thurnes, K. M. More, “High resolution, color FLC miniature display and FLC materials optimized for their operation,”Ferroelectrics (to be published).

Walker, A. C.

B. Robertson, E. J. Restall, M. R. Taghizadeh, A. C. Walker, “Space-variant interconnection networks in dichromated gelatin,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 128–129 (1990).
[CrossRef]

Wand, M. D.

M. D. Wand, R. T. Vohra, W. N. Thurnes, K. M. More, “High resolution, color FLC miniature display and FLC materials optimized for their operation,”Ferroelectrics (to be published).

Warr, S. T.

S. T. Warr, R. J. Mears, “Polarisation insensitive diffractive FLC systems,” Ferroelectrics 181, 53–59 (1995).
[CrossRef]

Wilkinson, T. D.

Yamazaki, H.

Appl. Opt. (4)

Bell Sys. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Sys. Tech. J. 56, 703–718 (1977).

Ferroelectrics (2)

S. T. Warr, R. J. Mears, “Polarisation insensitive diffractive FLC systems,” Ferroelectrics 181, 53–59 (1995).
[CrossRef]

P. Berthelé, H. Hamam, J.-L. de Bougrenet de la Tocnaye, “Programmable CGHs using ferroelectric liquid crystal material as phase modulators,” Ferroelectrics 181, 69–78 (1995).
[CrossRef]

Fibre Integr. Opt. (1)

U. Killat, G. Rabe, W. Rave, “Binary phase gratings for star couplers with high splitting ratio,” Fibre Integr. Opt. 4, 159–167 (1982).
[CrossRef]

J. Lightwave Technol. (1)

A. Jourdan, F. Masetti, M. Garnot, G. Soulage, M. Sotom, “Design and implementation of a fully reconfigurable all-optical cross-connect for high-capacity multiwavelength transport network,” J. Lightwave Technol. 14, 1198–1206 (1996).
[CrossRef]

Other (4)

B. Robertson, E. J. Restall, M. R. Taghizadeh, A. C. Walker, “Space-variant interconnection networks in dichromated gelatin,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 128–129 (1990).
[CrossRef]

The ITO layer etching was performed at the France Telecom Research Laboratories, Centre National d’Etudes en Télécommunications de Lannion, Departement Passif Intégration Hybride.

P. Berthelé, B. Fracasso, J.-L. de Bougrenet de la Tocnaye, “Efficient beam steering in the 1.55 micron window using a large tilt FLC one-dimensional array,”Ferroelectrics (to be published).

M. D. Wand, R. T. Vohra, W. N. Thurnes, K. M. More, “High resolution, color FLC miniature display and FLC materials optimized for their operation,”Ferroelectrics (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Free-space 1-to-N optical switch. Although it can be implemented by use of refractive or reflective optics (folded setup), the intermediate shift-invariant interconnect can be stored advantageously in a SLM in the form of a diffractive element.

Fig. 2
Fig. 2

Architecture of the N-to-N free-space switch.

Fig. 3
Fig. 3

SM fiber-to-SM fiber interconnection setup.

Fig. 4
Fig. 4

Experimental view of the FLC SLM displaying a grating with 16 pixels/period. The pixel dimensions are 22 μm × 6 mm (width × height).

Fig. 5
Fig. 5

Extrapolated birefringence of the Model CS 2005 LC as a function of the wavelength.

Fig. 6
Fig. 6

Intensity distribution of the Fraunhofer diffraction pattern produced by a binary phase grating displayed on the FLC SLM (Fig. 4).

Fig. 7
Fig. 7

SLM diffraction efficiency: (a) With varying grating periods and for a given grating period. (b) As a function of the azimuth of the input linear polarization.

Fig. 8
Fig. 8

SLM bandwidth as a function of the tolerable insertion-loss dispersion.

Tables (1)

Tables Icon

Table 1 Example of an Optimized Fiber-Array Configuration and the Corresponding Cross-Talk Values as Defined by Eq. (4)a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P n = λ f s n = v n δ x ,
v n = s 1 v 1 s n .
s n + m s n = p = v n v n + m .
D n + m n = sin 2 π p α n p 2 sin 2 π α n ,
σ n = δ s + s n 1 - δ x δ x ,
T n = exp - 2   σ n 2 w 0 2 ,
Δ n λ = A + B λ 2 ,
δ s k = f P δ x k   δ λ ,
δ λ = ± 1 f ln   10 20 P δ x k w 0 μ .

Metrics