Abstract

Transillumination images of objects hidden in normal and cancerous human breast tissues and bovine, porcine, and gallinaceous (chicken) tissues as well as model-random-scattering media were recorded with 1250-nm light from a chromium-doped forsterite laser. A Fourier space gate and a polarization gate were used to sort out image-bearing photons and discriminate against multiply scattered image-blurring photons. Better contrast, higher spatial resolution, and deeper penetration of samples were achieved for imaging with 1250-nm light than those obtained at shorter wavelengths, such as 1064 nm from a neodymium-doped yttrium aluminum garnet (YAG) laser. Better contrast and higher resolution were also obtained when the object was imaged through normal human breast tissue than through cancerous breast tissue. Images with marked distinction between fatty and fibrous human breast tissues were obtained when the Cr:forsterite laser was tuned to 1225 nm, a wavelength that resonates with an optical absorption band of breast fat tissues. Imaging with linearly polarized light revealed that the image quality depends significantly on the orientation of the polarization of the incident light with respect to the fibers in the bovine tissue.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a brief review of optical imaging techniques, see S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7, (3) 17–22 (1996).
  2. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 136–139.
  3. J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers Life Sci. 6, 131–141 (1994).
  4. H. Horinaka, K. Hashimoto, K. Wada, Y. Cho, “Extraction of quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium by polarization modulation,” Opt. Lett. 20, 1501–1503 (1995).
    [Crossref] [PubMed]
  5. S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 2, 161–163 (1996).
    [Crossref]
  6. T. Troy, D. Page, E. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for mammography,” J. Biomed. Opt. 1, 342–355 (1996). Tabulated values of optical transport properties vary widely. We chose values corresponding to those specimens in the table that closely matched the characteristics of our sample, such as the nature and extent of cancer in the cancerous specimen, the relative distribution of constituents such as normal, fibrous, and fat tissues in the normal specimens, and the age of the patient.
    [Crossref]
  7. W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [Crossref]
  8. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
    [Crossref]
  9. S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 364–371.
  10. J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
    [Crossref]
  11. F. A. Marks, “Optical determination of the hemoglobin oxygenation state of breast biopsies and human breast cancer xenografts in nude mice,” in Proceedings of Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, A. Katzir, eds., Proc. SPIE1641, 227–237 (1992).
    [Crossref]
  12. K. M. Yoo, Z. W. Zang, S. A. Ahmed, R. R. Alfano, “Imaging objects hidden in scattering media using fluorescence-absorption techniques,” Opt. Lett. 16, 1252–1254 (1991).
    [Crossref] [PubMed]
  13. V. Petricevic, S. K. Gayen, R. R. Alfano, “Near infrared tunable operation of chromium-doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
    [Crossref] [PubMed]
  14. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. Fujimoto, “Self-phase-modulated Kerr-lens-modelocked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
    [Crossref] [PubMed]
  15. S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
    [Crossref] [PubMed]
  16. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [Crossref] [PubMed]

1997 (2)

1996 (5)

E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. Fujimoto, “Self-phase-modulated Kerr-lens-modelocked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
[Crossref] [PubMed]

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

For a brief review of optical imaging techniques, see S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7, (3) 17–22 (1996).

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 2, 161–163 (1996).
[Crossref]

T. Troy, D. Page, E. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for mammography,” J. Biomed. Opt. 1, 342–355 (1996). Tabulated values of optical transport properties vary widely. We chose values corresponding to those specimens in the table that closely matched the characteristics of our sample, such as the nature and extent of cancer in the cancerous specimen, the relative distribution of constituents such as normal, fibrous, and fat tissues in the normal specimens, and the age of the patient.
[Crossref]

1995 (1)

1994 (1)

J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers Life Sci. 6, 131–141 (1994).

1991 (2)

K. M. Yoo, Z. W. Zang, S. A. Ahmed, R. R. Alfano, “Imaging objects hidden in scattering media using fluorescence-absorption techniques,” Opt. Lett. 16, 1252–1254 (1991).
[Crossref] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

1990 (1)

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

1989 (1)

Ahmed, S. A.

Alfano, R. R.

S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[Crossref] [PubMed]

For a brief review of optical imaging techniques, see S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7, (3) 17–22 (1996).

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 2, 161–163 (1996).
[Crossref]

J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers Life Sci. 6, 131–141 (1994).

K. M. Yoo, Z. W. Zang, S. A. Ahmed, R. R. Alfano, “Imaging objects hidden in scattering media using fluorescence-absorption techniques,” Opt. Lett. 16, 1252–1254 (1991).
[Crossref] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, “Near infrared tunable operation of chromium-doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
[Crossref] [PubMed]

Bashkansky, M.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

Battle, P. R.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

Bilinsky, I. P.

Bouma, E.

Cheong, W.

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Cho, Y.

de Boer, J. F.

Demos, S. G.

S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[Crossref] [PubMed]

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 2, 161–163 (1996).
[Crossref]

Dolne, J. J.

J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers Life Sci. 6, 131–141 (1994).

Duncan, M. D.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

Fujimoto, J.

Gayen, S. K.

For a brief review of optical imaging techniques, see S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7, (3) 17–22 (1996).

V. Petricevic, S. K. Gayen, R. R. Alfano, “Near infrared tunable operation of chromium-doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
[Crossref] [PubMed]

Golubovic, B.

Hashimoto, K.

Horinaka, H.

Jacques, S. L.

S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 364–371.

Liu, F.

J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers Life Sci. 6, 131–141 (1994).

Mahon, R.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

Marks, F. A.

F. A. Marks, “Optical determination of the hemoglobin oxygenation state of breast biopsies and human breast cancer xenografts in nude mice,” in Proceedings of Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, A. Katzir, eds., Proc. SPIE1641, 227–237 (1992).
[Crossref]

Milner, T. E.

Moes, C. J. M.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

Moon, J. A.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

Nelson, J. S.

Page, D.

T. Troy, D. Page, E. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for mammography,” J. Biomed. Opt. 1, 342–355 (1996). Tabulated values of optical transport properties vary widely. We chose values corresponding to those specimens in the table that closely matched the characteristics of our sample, such as the nature and extent of cancer in the cancerous specimen, the relative distribution of constituents such as normal, fibrous, and fat tissues in the normal specimens, and the age of the patient.
[Crossref]

Petricevic, V.

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Reintjes, J.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 136–139.

Sevick-Muraca, E.

T. Troy, D. Page, E. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for mammography,” J. Biomed. Opt. 1, 342–355 (1996). Tabulated values of optical transport properties vary widely. We chose values corresponding to those specimens in the table that closely matched the characteristics of our sample, such as the nature and extent of cancer in the cancerous specimen, the relative distribution of constituents such as normal, fibrous, and fat tissues in the normal specimens, and the age of the patient.
[Crossref]

Tearney, G. J.

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 136–139.

Troy, T.

T. Troy, D. Page, E. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for mammography,” J. Biomed. Opt. 1, 342–355 (1996). Tabulated values of optical transport properties vary widely. We chose values corresponding to those specimens in the table that closely matched the characteristics of our sample, such as the nature and extent of cancer in the cancerous specimen, the relative distribution of constituents such as normal, fibrous, and fat tissues in the normal specimens, and the age of the patient.
[Crossref]

van Gemert, M. J. C.

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[Crossref] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

van Marle, J.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

van Staveren, H. J.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

Wada, K.

Welch, A. J.

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Yoo, K. M.

J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers Life Sci. 6, 131–141 (1994).

K. M. Yoo, Z. W. Zang, S. A. Ahmed, R. R. Alfano, “Imaging objects hidden in scattering media using fluorescence-absorption techniques,” Opt. Lett. 16, 1252–1254 (1991).
[Crossref] [PubMed]

Zang, Z. W.

Appl. Opt. (3)

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 31, 4507–4514 (1991).
[Crossref]

V. Petricevic, S. K. Gayen, R. R. Alfano, “Near infrared tunable operation of chromium-doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
[Crossref] [PubMed]

S. G. Demos, R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

J. Biomed. Opt. (1)

T. Troy, D. Page, E. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for mammography,” J. Biomed. Opt. 1, 342–355 (1996). Tabulated values of optical transport properties vary widely. We chose values corresponding to those specimens in the table that closely matched the characteristics of our sample, such as the nature and extent of cancer in the cancerous specimen, the relative distribution of constituents such as normal, fibrous, and fat tissues in the normal specimens, and the age of the patient.
[Crossref]

Lasers Life Sci. (1)

J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers Life Sci. 6, 131–141 (1994).

Opt. Lett. (5)

Opt. Photon. News (1)

For a brief review of optical imaging techniques, see S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7, (3) 17–22 (1996).

Phys. Rev. E (1)

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

Other (3)

F. A. Marks, “Optical determination of the hemoglobin oxygenation state of breast biopsies and human breast cancer xenografts in nude mice,” in Proceedings of Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, A. Katzir, eds., Proc. SPIE1641, 227–237 (1992).
[Crossref]

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 136–139.

S. L. Jacques, “Origins of tissue optical properties in the UVA, visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 364–371.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the experimental arrangement for NIR imaging of objects embedded in biological tissues and model turbid media: A, aperture; P, linear polarizer; S, sample.

Fig. 2
Fig. 2

Comparison of the imaging characteristics of 1250- and 1064-nm light, showing the contrast of images of a bar chart as a function of Intralipid-10% concentration in water. The bar chart was attached to the front surface of a 10-mm-thick glass cell containing the Intralipid suspension.

Fig. 3
Fig. 3

Transillumination images of a 1.5-mm-diameter metal rod placed in the middle of a 12-mm-thick bovine brisket tissue sample for aperture diameters of (a) 0.9 mm and (b) 6 mm. (c) Spatial intensity distribution of the transillumination images of (a) and (b) integrated over the area highlighted by dashed lines in the respective images. (d) Contrast of the image as a function of the Fourier aperture diameter when the rod was placed in the middle of a bovine brisket tissues of 12-mm and 9-mm thickness.

Fig. 4
Fig. 4

Transillumination images of the 1.5 mm-diameter rod embedded in the middle of a 9-mm-thick bovine brisket tissue with a polarization gate, with the polarizer before the NIR area camera oriented (a) parallel and (c) perpendicular to the incident polarization. (e) Difference image obtained by subtraction of the image in (c) from that in (a). (b), (d), (f) Normalized intensity distribution, integrated over the same vertical regions highlighted by white dashed lines as in the images of (a), (c), and (e), respectively.

Fig. 5
Fig. 5

Degree of polarization D and contrast C as a function of the thickness of the bovine brisket tissue sample.

Fig. 6
Fig. 6

Intensity I p of the component of the transmitted light polarized parallel to the incident polarization direction as a function of angle θ between this direction and the alignment of fibers in the tissue. Solid curve, fit of the experimental data denoted by squares to Eq. (3) in the text. The sample was a 6.3-mm-thick piece of bovine brisket tissue. Inset, illustration of how θ between the incident polarization E and the orientation of fibers in tissue is defined.

Fig. 7
Fig. 7

Transillumination images of the 1.5-mm-diameter rod placed in the middle of a 10-mm-thick bovine brisket tissue sample for fibers oriented at (a) 90° (corresponding to a maximum value of I p ) and (b) 45° (corresponding to a minimum value of I p ) with respect to the polarization of the incident beam of light. The polarizer in front of the NIR area camera was oriented parallel to the polarization of the incident beam.

Fig. 8
Fig. 8

Contrast C and relative lateral size W of transillumination images as a function of thickness of gallinaceous, bovine, and porcine tissue samples. C is represented by triangles, and W by circles. Filled circles and triangles pertain to measurements made with 1250-nm light, and open circles and open inverted triangles denote measurements carried out at 1064 nm.

Fig. 9
Fig. 9

Two-dimensional transillumination images of the 1.5-mm-diameter rod sandwiched between (a) two 5-mm-thick normal human breast tissues and (b) a cancerous and a normal breast tissue each of which is 5 mm thick. (c) Corresponding spatial intensity profiles integrated along a horizontal area [highlighted by the white dashed lines in (a) and (b)] of the images. The profile of the image with both normal tissues is shown by the thick curve, and that containing a cancerous piece by the thin curve.

Fig. 10
Fig. 10

Two-dimensional transillumination images of a 5-mm-thick human breast tissue sample comprising fatty and fibrous regions obtained with (a) 1225-nm light and (b) 1250-nm light from a Cr:forsterite laser. (c) Corresponding spatial intensity profiles integrated over a horizontal area [highlighted by the white dashed boxes in (a) and (b)] of the images. The lateral dimensions of the sample were 35 mm × 14 mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C = I max - I min / I max + I min ,
D = I p - I s / I p + I s ,
I p θ = a + b   cos 2 2 θ + c   sin 2 θ ,
A = I p θ - I p min / I p θ + I p min ,
W = W s / W w ,

Metrics