Abstract

A wave-front-correction element (WFCE) is produced to make a cylindrical Ag-ion-exchanged gradient-index (GRIN) lens with a high numerical aperture (0.53) diffraction limited (wave-front error, 0.02λ rms). The wave-front aberrations of the cylindrical GRIN lens are measured by a phase-shifting shearing interferometer, with a conventional microscope objective used as a compensation lens. The continuous surface relief of the WFCE is produced by a lithographic process. The wave-front-corrected GRIN lens is applied to collimate the strongly divergent light (57° full diverging angle measured at 1/e 2 of maximum intensity) emitted by a high-power diode laser. The power irradiated into a full angle of 2 mrad can be enhanced by a factor of 1.8 with the WFCE.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Loosen, G. Treusch, C. R. Haas, U. Gardenier, M. Weck, V. Sinnhoff, St. Kasperowski, R. vor dem Esche, “High-power diodes-lasers and their direct industrial applications,” in Laser Diodes and Applications, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2382, 78–86 (1995).
    [CrossRef]
  2. Lissotschenko Mikrooptic GmbH, Hauert 7, D-44227 Dortmund, Germany.
  3. A. R. Holdsworth, H. J. Baker, “Assessment of micro-lenses for diode bar collimation,” in Laser Diode and LED Applications III, K. J. Linden, ed., Proc. SPIE3000, 209–214 (1997).
    [CrossRef]
  4. J. J. Snyder, P. Reichert, T. M. Baer, “Fast diffraction-limited cylindrical microlenses,” Appl. Opt. 30, 2743–2747 (1991).
    [CrossRef] [PubMed]
  5. B. Messerschmidt, T. Possner, R. Goering, “Colorless gradient-index cylindrical lenses with high numerical apertures produced by silver-ion exchange,” Appl. Opt. 34, 7825–7830 (1995).
    [CrossRef] [PubMed]
  6. B. Messerschmidt, B. L. McIntyre, S. N. Houde-Walter, “Desired concentration-dependent ion exchange for micro-optic lenses,” Appl. Opt. 35, 5670–5676 (1996).
    [CrossRef] [PubMed]
  7. H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2686 (1994).
    [CrossRef]
  8. H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth) acrylate alkoxysilanes: a new type of refractive compound,” Mat. Res. Soc. Symp. Proc. 271, 719–724 (1992).
    [CrossRef]
  9. H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
    [CrossRef]
  10. P. Belland, J. P. Crenn, “Changes in the characteristic of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
    [CrossRef] [PubMed]
  11. K. Iga, Y. Kokubun, Oikawa, Fundamentals of Microoptics: Distributed-Index, Microlens and Stacked Planar Optics,” (Academic, Tokyo, 1984), Chap. 4, p. 43.

1996 (1)

1995 (1)

1994 (1)

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2686 (1994).
[CrossRef]

1992 (1)

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth) acrylate alkoxysilanes: a new type of refractive compound,” Mat. Res. Soc. Symp. Proc. 271, 719–724 (1992).
[CrossRef]

1991 (1)

1982 (1)

1966 (1)

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Baer, T. M.

Baker, H. J.

A. R. Holdsworth, H. J. Baker, “Assessment of micro-lenses for diode bar collimation,” in Laser Diode and LED Applications III, K. J. Linden, ed., Proc. SPIE3000, 209–214 (1997).
[CrossRef]

Belland, P.

Crenn, J. P.

Falkenstörfer, O.

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2686 (1994).
[CrossRef]

Gardenier, U.

P. Loosen, G. Treusch, C. R. Haas, U. Gardenier, M. Weck, V. Sinnhoff, St. Kasperowski, R. vor dem Esche, “High-power diodes-lasers and their direct industrial applications,” in Laser Diodes and Applications, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2382, 78–86 (1995).
[CrossRef]

Glaubitt, W.

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth) acrylate alkoxysilanes: a new type of refractive compound,” Mat. Res. Soc. Symp. Proc. 271, 719–724 (1992).
[CrossRef]

Goering, R.

Haas, C. R.

P. Loosen, G. Treusch, C. R. Haas, U. Gardenier, M. Weck, V. Sinnhoff, St. Kasperowski, R. vor dem Esche, “High-power diodes-lasers and their direct industrial applications,” in Laser Diodes and Applications, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2382, 78–86 (1995).
[CrossRef]

Holdsworth, A. R.

A. R. Holdsworth, H. J. Baker, “Assessment of micro-lenses for diode bar collimation,” in Laser Diode and LED Applications III, K. J. Linden, ed., Proc. SPIE3000, 209–214 (1997).
[CrossRef]

Houde-Walter, S. N.

Kasperowski, St.

P. Loosen, G. Treusch, C. R. Haas, U. Gardenier, M. Weck, V. Sinnhoff, St. Kasperowski, R. vor dem Esche, “High-power diodes-lasers and their direct industrial applications,” in Laser Diodes and Applications, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2382, 78–86 (1995).
[CrossRef]

Kogelnik, H.

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Li, T.

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Lindlein, N.

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2686 (1994).
[CrossRef]

Loosen, P.

P. Loosen, G. Treusch, C. R. Haas, U. Gardenier, M. Weck, V. Sinnhoff, St. Kasperowski, R. vor dem Esche, “High-power diodes-lasers and their direct industrial applications,” in Laser Diodes and Applications, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2382, 78–86 (1995).
[CrossRef]

McIntyre, B. L.

Messerschmidt, B.

Possner, T.

Reichert, P.

Rose, K.

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth) acrylate alkoxysilanes: a new type of refractive compound,” Mat. Res. Soc. Symp. Proc. 271, 719–724 (1992).
[CrossRef]

Schwider, J.

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2686 (1994).
[CrossRef]

Sickinger, H.

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2686 (1994).
[CrossRef]

Sinnhoff, V.

P. Loosen, G. Treusch, C. R. Haas, U. Gardenier, M. Weck, V. Sinnhoff, St. Kasperowski, R. vor dem Esche, “High-power diodes-lasers and their direct industrial applications,” in Laser Diodes and Applications, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2382, 78–86 (1995).
[CrossRef]

Snyder, J. J.

Treusch, G.

P. Loosen, G. Treusch, C. R. Haas, U. Gardenier, M. Weck, V. Sinnhoff, St. Kasperowski, R. vor dem Esche, “High-power diodes-lasers and their direct industrial applications,” in Laser Diodes and Applications, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2382, 78–86 (1995).
[CrossRef]

vor dem Esche, R.

P. Loosen, G. Treusch, C. R. Haas, U. Gardenier, M. Weck, V. Sinnhoff, St. Kasperowski, R. vor dem Esche, “High-power diodes-lasers and their direct industrial applications,” in Laser Diodes and Applications, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2382, 78–86 (1995).
[CrossRef]

Weck, M.

P. Loosen, G. Treusch, C. R. Haas, U. Gardenier, M. Weck, V. Sinnhoff, St. Kasperowski, R. vor dem Esche, “High-power diodes-lasers and their direct industrial applications,” in Laser Diodes and Applications, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2382, 78–86 (1995).
[CrossRef]

Wolter, H.

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth) acrylate alkoxysilanes: a new type of refractive compound,” Mat. Res. Soc. Symp. Proc. 271, 719–724 (1992).
[CrossRef]

Appl. Opt. (4)

Mat. Res. Soc. Symp. Proc. (1)

H. Wolter, W. Glaubitt, K. Rose, “Multifunctional (meth) acrylate alkoxysilanes: a new type of refractive compound,” Mat. Res. Soc. Symp. Proc. 271, 719–724 (1992).
[CrossRef]

Opt. Eng. (1)

H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider, “Characterization of microlenses using a phase-shifting shearing interferometer,” Opt. Eng. 33, 2680–2686 (1994).
[CrossRef]

Proc. IEEE (1)

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Other (4)

P. Loosen, G. Treusch, C. R. Haas, U. Gardenier, M. Weck, V. Sinnhoff, St. Kasperowski, R. vor dem Esche, “High-power diodes-lasers and their direct industrial applications,” in Laser Diodes and Applications, K. J. Linden, P. R. Akkapeddi, eds., Proc. SPIE2382, 78–86 (1995).
[CrossRef]

Lissotschenko Mikrooptic GmbH, Hauert 7, D-44227 Dortmund, Germany.

A. R. Holdsworth, H. J. Baker, “Assessment of micro-lenses for diode bar collimation,” in Laser Diode and LED Applications III, K. J. Linden, ed., Proc. SPIE3000, 209–214 (1997).
[CrossRef]

K. Iga, Y. Kokubun, Oikawa, Fundamentals of Microoptics: Distributed-Index, Microlens and Stacked Planar Optics,” (Academic, Tokyo, 1984), Chap. 4, p. 43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Phase-shifting shearing interferometer for the wave-front measurement of cylindrical lenses. A MO collimates the wave front in the plane of the drawing. A cut through this collimated wave front can be measured. The two achromates and the MO image the back surface of the GRIN lens onto the CCD via a 4-f configuration.

Fig. 2
Fig. 2

Scheme of the mask writer system. The mask in the pupil is imaged uniformly onto the substrate. When the xy table with the substrate is moved back and forth, the continuous surface relief of the WFCE can be written into the photoresist. The image of the mask on the substrate is shown to the right of the mask writer. The arrow indicates the direction that the substrate is moved.

Fig. 3
Fig. 3

Profilometer measurement of the developed photoresist structure. Four structures for WFCE’s have been written next to each other, with decreasing exposure times from left to right. An example of a calculated WFCE is displayed next to the fabricated WFCE that fits this shape best.

Fig. 4
Fig. 4

Cylindrical GRIN lens with a WFCE attached to the side of the collimated beam. The WFCE is molded onto a thin slide of glass, which is attached to the GRIN lens with an UV-curable epoxy. In the schematic the height of the WFCE is exaggerated.

Fig. 5
Fig. 5

Wave fronts measured with the shearing interferometer at 633 nm. (a) Wave front of the uncorrected cylindrical GRIN lens. (b) Wave front of the GRIN lens with the WFCE.

Fig. 6
Fig. 6

Mask used to write the WFCE. The parts of the mask with a greater height yield a larger light dose on the photoresist and therefore a greater depth of the WFCE after development.

Fig. 7
Fig. 7

Measurement of the LSF. The area under the curves is normalized. The corrected lens (solid curve) shows a greater than two times higher intensity in the maximum compared with the uncorrected GRIN lens (dotted curve).

Fig. 8
Fig. 8

Experimental setup for the fast-axis collimation of a HPDL. The cylindrical GRIN lens collimates the radiation in the direction of the fast axis in the plane of the drawing. Perpendicular to this plane the light is collimated and refocussed by two cylindrical lenses in the direction of the slow axis.

Fig. 9
Fig. 9

The emitter structure of the HPDL bar is slightly bowed (smile) as shown on the left side of the figure. For this reason the image of the emitters is bowed, too. As indicated on the right, this leads to a reduction of the signal measured behind the slit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S x = WF x / n - 1 ,
M x = VT S x / mag / N ,

Metrics