Abstract

We have developed a chemical vaporization machining device that has computer numerically controlled plasma, by using a pipe electrode for optical fabrications. In this device, less than approximately 1 atm of pressure, plasma is generated around the tip of a pipe electrode. During the process, a workpiece is scanned against the electrode under computer control to achieve the desired shape to be removed. A workpiece of silica glass plate is shaped by use of this device, and the removal characteristics of the device are examined. The equations to characterize numerically the shape resulting from scanning of a workpiece have been derived. The new device allows the high precision of optics from the micrometer to the nanometer level with high-speed removal. The shaped surface is sufficiently smooth to be suitable for optical use.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Parks, Handbook of Optics Vol. 1: Fundamentals, Techniques, and Design, 2nd ed., M. Bass, E. W. V. Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Chap. 40, pp. 40.3–40.9.
  2. R. Aspden, R. McDonough, F. R. Nitchie, “Computer assisted optical surfacing,” Appl. Opt. 11, 2739–2747 (1972).
    [CrossRef] [PubMed]
  3. R. E. Wagner, R. R. Shannon, “Fabrication of aspherics using a mathematical model for material removal,” Appl. Opt. 13, 1683–1689 (1974).
    [CrossRef] [PubMed]
  4. D. J. Bajuk, “Computer controlled generation of rotationally symmetric aspheric surfaces,” Opt. Eng. 15, 401–406 (1976).
    [CrossRef]
  5. R. A. Jones, “Optimization of computer controlled polishing,” Appl. Opt. 16, 218–224 (1977).
    [CrossRef] [PubMed]
  6. A. S. Savel’ev, A. P. Bogdanov, “Automated polishing of large optical components with a small tool,” Sov. J. Opt. Technol. 52, 294–297 (1985).
  7. G. Doughty, J. Smith, “Microcomputer-controlled polishing machine for very smooth and deep aspherical surfaces,” Appl. Opt. 26, 2421–2426 (1987).
    [CrossRef] [PubMed]
  8. M. Negishi, M. Ando, M. Takimoto, A. Deguchi, N. Nakamura, “Studies of super-smooth polishing on aspherical surfaces,” Int. J. Jpn. Soc. Prec. Eng. 29, 1–4 (1995).
  9. S. Kawai, Y. Yamasaki, K. Ohtani, “Development of an NC aspherical lens polishing machine,” J. Jpn. Soc. Prec. Eng. 53, 1863–1868 (1987) (in Japanese).
    [CrossRef]
  10. S. Kawai, “Numerically controlled aspheric generater,” Opt. Electron.-Opt. Eng. Contact 26, 187–199 (1988) (in Japanese).
  11. L. D. Bollinger, C. B. Zarowin, “Rapid, nonmechanical, damage-free figuring of optical surfaces using plasma-assisted chemical etching (PACE): Part I. Experimental Results,” in Advances in Fabrication and Metrology for Optics and Large Optics, J. B. Arnold, R. E. Parks, eds., Proc. SPIE966, 82–90 (1988).
    [CrossRef]
  12. C. B. Zarowin, L. D. Bollinger, “Rapid, nonmechanical, damage free figuring of optical surfaces using plasma assisted chemical etching (PACE): Part II. Theory and process control,” in Advances in Fabrication and Metrology for Optics and Large Optics, J. B. Arnold, R. E. Parks, eds., Proc. SPIE966, 91–97 (1988).
    [CrossRef]
  13. D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, G. M. Sanger, eds., Proc. SPIE1333, 44–57 (1990).
    [CrossRef]
  14. Y. Mori, K. Yamauchi, K. Endo, K. Yamamura, K. Inagaki, “Development of plasma chemical vaporization machining (CVM),” in Proceedings of the Japanese Society of Precision Engineering Spring Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1991), pp. 517–518 (in Japanese).
  15. Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar, Kobe, Japan (Butterworth-Heinemann, Mass., 1993), pp. 78–87.
  16. Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—an ultra precision machining with high pressure reactive plasma,” Technol. Rep. Osaka U. 43, 261–266 (1993).
  17. Y. Mori, K. Yamauchi, K. Yamamura, Y. Sano, “A study on plasma chemical vaporization machining (CVM)—investigation of spatial resolving power of removal,” in Proceedings of the Japanese Society of Precision Engineering Autumn Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1992), pp. 645–646 (in Japanese).
  18. J. Taguchi, M. Kusano, “Development of high-accuracy coordinate measuring instrument for aspheric surfaces,” in Proceedings of the Japanese Society of Precision Engineering Spring Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1991), pp. 697–698 (in Japanese).
  19. R. G. Poulsen, “Plasma etching in integrated circuit manufacture—a review,” J. Vac. Sci. Technol. 14, 266–274 (1977).
    [CrossRef]
  20. J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering from optical surfaces,” in Applied Optics and Optical Engineering, Vol. 7, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1979), Chap. 7, pp. 191–244.
    [CrossRef]
  21. K. Nemoto, T. Fujii, N. Goto, H. Takino, T. Kobayashi, N. Shibata, K. Yamamura, Y. Mori, “Laser beam intensity profile transformation with a fabricated mirror,” Appl. Opt. 36, 551–557 (1997).
    [CrossRef] [PubMed]

1997 (1)

1995 (1)

M. Negishi, M. Ando, M. Takimoto, A. Deguchi, N. Nakamura, “Studies of super-smooth polishing on aspherical surfaces,” Int. J. Jpn. Soc. Prec. Eng. 29, 1–4 (1995).

1993 (1)

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—an ultra precision machining with high pressure reactive plasma,” Technol. Rep. Osaka U. 43, 261–266 (1993).

1988 (1)

S. Kawai, “Numerically controlled aspheric generater,” Opt. Electron.-Opt. Eng. Contact 26, 187–199 (1988) (in Japanese).

1987 (2)

S. Kawai, Y. Yamasaki, K. Ohtani, “Development of an NC aspherical lens polishing machine,” J. Jpn. Soc. Prec. Eng. 53, 1863–1868 (1987) (in Japanese).
[CrossRef]

G. Doughty, J. Smith, “Microcomputer-controlled polishing machine for very smooth and deep aspherical surfaces,” Appl. Opt. 26, 2421–2426 (1987).
[CrossRef] [PubMed]

1985 (1)

A. S. Savel’ev, A. P. Bogdanov, “Automated polishing of large optical components with a small tool,” Sov. J. Opt. Technol. 52, 294–297 (1985).

1977 (2)

R. A. Jones, “Optimization of computer controlled polishing,” Appl. Opt. 16, 218–224 (1977).
[CrossRef] [PubMed]

R. G. Poulsen, “Plasma etching in integrated circuit manufacture—a review,” J. Vac. Sci. Technol. 14, 266–274 (1977).
[CrossRef]

1976 (1)

D. J. Bajuk, “Computer controlled generation of rotationally symmetric aspheric surfaces,” Opt. Eng. 15, 401–406 (1976).
[CrossRef]

1974 (1)

1972 (1)

Ando, M.

M. Negishi, M. Ando, M. Takimoto, A. Deguchi, N. Nakamura, “Studies of super-smooth polishing on aspherical surfaces,” Int. J. Jpn. Soc. Prec. Eng. 29, 1–4 (1995).

Aspden, R.

Bajuk, D. J.

D. J. Bajuk, “Computer controlled generation of rotationally symmetric aspheric surfaces,” Opt. Eng. 15, 401–406 (1976).
[CrossRef]

Bennett, H. E.

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering from optical surfaces,” in Applied Optics and Optical Engineering, Vol. 7, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1979), Chap. 7, pp. 191–244.
[CrossRef]

Bennett, J. M.

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering from optical surfaces,” in Applied Optics and Optical Engineering, Vol. 7, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1979), Chap. 7, pp. 191–244.
[CrossRef]

Bogdanov, A. P.

A. S. Savel’ev, A. P. Bogdanov, “Automated polishing of large optical components with a small tool,” Sov. J. Opt. Technol. 52, 294–297 (1985).

Bollinger, D.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, G. M. Sanger, eds., Proc. SPIE1333, 44–57 (1990).
[CrossRef]

Bollinger, L. D.

L. D. Bollinger, C. B. Zarowin, “Rapid, nonmechanical, damage-free figuring of optical surfaces using plasma-assisted chemical etching (PACE): Part I. Experimental Results,” in Advances in Fabrication and Metrology for Optics and Large Optics, J. B. Arnold, R. E. Parks, eds., Proc. SPIE966, 82–90 (1988).
[CrossRef]

C. B. Zarowin, L. D. Bollinger, “Rapid, nonmechanical, damage free figuring of optical surfaces using plasma assisted chemical etching (PACE): Part II. Theory and process control,” in Advances in Fabrication and Metrology for Optics and Large Optics, J. B. Arnold, R. E. Parks, eds., Proc. SPIE966, 91–97 (1988).
[CrossRef]

Deguchi, A.

M. Negishi, M. Ando, M. Takimoto, A. Deguchi, N. Nakamura, “Studies of super-smooth polishing on aspherical surfaces,” Int. J. Jpn. Soc. Prec. Eng. 29, 1–4 (1995).

Doughty, G.

Elson, J. M.

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering from optical surfaces,” in Applied Optics and Optical Engineering, Vol. 7, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1979), Chap. 7, pp. 191–244.
[CrossRef]

Endo, K.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—an ultra precision machining with high pressure reactive plasma,” Technol. Rep. Osaka U. 43, 261–266 (1993).

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar, Kobe, Japan (Butterworth-Heinemann, Mass., 1993), pp. 78–87.

Y. Mori, K. Yamauchi, K. Endo, K. Yamamura, K. Inagaki, “Development of plasma chemical vaporization machining (CVM),” in Proceedings of the Japanese Society of Precision Engineering Spring Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1991), pp. 517–518 (in Japanese).

Fujii, T.

Gallatin, G.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, G. M. Sanger, eds., Proc. SPIE1333, 44–57 (1990).
[CrossRef]

Goto, N.

Inagaki, K.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—an ultra precision machining with high pressure reactive plasma,” Technol. Rep. Osaka U. 43, 261–266 (1993).

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar, Kobe, Japan (Butterworth-Heinemann, Mass., 1993), pp. 78–87.

Y. Mori, K. Yamauchi, K. Endo, K. Yamamura, K. Inagaki, “Development of plasma chemical vaporization machining (CVM),” in Proceedings of the Japanese Society of Precision Engineering Spring Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1991), pp. 517–518 (in Japanese).

Jones, R. A.

Kakiuchi, H.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—an ultra precision machining with high pressure reactive plasma,” Technol. Rep. Osaka U. 43, 261–266 (1993).

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar, Kobe, Japan (Butterworth-Heinemann, Mass., 1993), pp. 78–87.

Kataoka, T.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—an ultra precision machining with high pressure reactive plasma,” Technol. Rep. Osaka U. 43, 261–266 (1993).

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar, Kobe, Japan (Butterworth-Heinemann, Mass., 1993), pp. 78–87.

Kawai, S.

S. Kawai, “Numerically controlled aspheric generater,” Opt. Electron.-Opt. Eng. Contact 26, 187–199 (1988) (in Japanese).

S. Kawai, Y. Yamasaki, K. Ohtani, “Development of an NC aspherical lens polishing machine,” J. Jpn. Soc. Prec. Eng. 53, 1863–1868 (1987) (in Japanese).
[CrossRef]

Kobayashi, T.

Kusano, M.

J. Taguchi, M. Kusano, “Development of high-accuracy coordinate measuring instrument for aspheric surfaces,” in Proceedings of the Japanese Society of Precision Engineering Spring Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1991), pp. 697–698 (in Japanese).

McDonough, R.

Mori, Y.

K. Nemoto, T. Fujii, N. Goto, H. Takino, T. Kobayashi, N. Shibata, K. Yamamura, Y. Mori, “Laser beam intensity profile transformation with a fabricated mirror,” Appl. Opt. 36, 551–557 (1997).
[CrossRef] [PubMed]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—an ultra precision machining with high pressure reactive plasma,” Technol. Rep. Osaka U. 43, 261–266 (1993).

Y. Mori, K. Yamauchi, K. Yamamura, Y. Sano, “A study on plasma chemical vaporization machining (CVM)—investigation of spatial resolving power of removal,” in Proceedings of the Japanese Society of Precision Engineering Autumn Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1992), pp. 645–646 (in Japanese).

Y. Mori, K. Yamauchi, K. Endo, K. Yamamura, K. Inagaki, “Development of plasma chemical vaporization machining (CVM),” in Proceedings of the Japanese Society of Precision Engineering Spring Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1991), pp. 517–518 (in Japanese).

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar, Kobe, Japan (Butterworth-Heinemann, Mass., 1993), pp. 78–87.

Nakamura, N.

M. Negishi, M. Ando, M. Takimoto, A. Deguchi, N. Nakamura, “Studies of super-smooth polishing on aspherical surfaces,” Int. J. Jpn. Soc. Prec. Eng. 29, 1–4 (1995).

Negishi, M.

M. Negishi, M. Ando, M. Takimoto, A. Deguchi, N. Nakamura, “Studies of super-smooth polishing on aspherical surfaces,” Int. J. Jpn. Soc. Prec. Eng. 29, 1–4 (1995).

Nemoto, K.

Nitchie, F. R.

Ohtani, K.

S. Kawai, Y. Yamasaki, K. Ohtani, “Development of an NC aspherical lens polishing machine,” J. Jpn. Soc. Prec. Eng. 53, 1863–1868 (1987) (in Japanese).
[CrossRef]

Parks, R. E.

R. E. Parks, Handbook of Optics Vol. 1: Fundamentals, Techniques, and Design, 2nd ed., M. Bass, E. W. V. Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Chap. 40, pp. 40.3–40.9.

Poulsen, R. G.

R. G. Poulsen, “Plasma etching in integrated circuit manufacture—a review,” J. Vac. Sci. Technol. 14, 266–274 (1977).
[CrossRef]

Samuels, J.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, G. M. Sanger, eds., Proc. SPIE1333, 44–57 (1990).
[CrossRef]

Sano, Y.

Y. Mori, K. Yamauchi, K. Yamamura, Y. Sano, “A study on plasma chemical vaporization machining (CVM)—investigation of spatial resolving power of removal,” in Proceedings of the Japanese Society of Precision Engineering Autumn Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1992), pp. 645–646 (in Japanese).

Savel’ev, A. S.

A. S. Savel’ev, A. P. Bogdanov, “Automated polishing of large optical components with a small tool,” Sov. J. Opt. Technol. 52, 294–297 (1985).

Shannon, R. R.

Shibata, N.

Smith, J.

Steinberg, G.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, G. M. Sanger, eds., Proc. SPIE1333, 44–57 (1990).
[CrossRef]

Taguchi, J.

J. Taguchi, M. Kusano, “Development of high-accuracy coordinate measuring instrument for aspheric surfaces,” in Proceedings of the Japanese Society of Precision Engineering Spring Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1991), pp. 697–698 (in Japanese).

Takimoto, M.

M. Negishi, M. Ando, M. Takimoto, A. Deguchi, N. Nakamura, “Studies of super-smooth polishing on aspherical surfaces,” Int. J. Jpn. Soc. Prec. Eng. 29, 1–4 (1995).

Takino, H.

Wagner, R. E.

Yamamura, K.

K. Nemoto, T. Fujii, N. Goto, H. Takino, T. Kobayashi, N. Shibata, K. Yamamura, Y. Mori, “Laser beam intensity profile transformation with a fabricated mirror,” Appl. Opt. 36, 551–557 (1997).
[CrossRef] [PubMed]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—an ultra precision machining with high pressure reactive plasma,” Technol. Rep. Osaka U. 43, 261–266 (1993).

Y. Mori, K. Yamauchi, K. Endo, K. Yamamura, K. Inagaki, “Development of plasma chemical vaporization machining (CVM),” in Proceedings of the Japanese Society of Precision Engineering Spring Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1991), pp. 517–518 (in Japanese).

Y. Mori, K. Yamauchi, K. Yamamura, Y. Sano, “A study on plasma chemical vaporization machining (CVM)—investigation of spatial resolving power of removal,” in Proceedings of the Japanese Society of Precision Engineering Autumn Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1992), pp. 645–646 (in Japanese).

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar, Kobe, Japan (Butterworth-Heinemann, Mass., 1993), pp. 78–87.

Yamasaki, Y.

S. Kawai, Y. Yamasaki, K. Ohtani, “Development of an NC aspherical lens polishing machine,” J. Jpn. Soc. Prec. Eng. 53, 1863–1868 (1987) (in Japanese).
[CrossRef]

Yamauchi, K.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—an ultra precision machining with high pressure reactive plasma,” Technol. Rep. Osaka U. 43, 261–266 (1993).

Y. Mori, K. Yamauchi, K. Yamamura, Y. Sano, “A study on plasma chemical vaporization machining (CVM)—investigation of spatial resolving power of removal,” in Proceedings of the Japanese Society of Precision Engineering Autumn Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1992), pp. 645–646 (in Japanese).

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar, Kobe, Japan (Butterworth-Heinemann, Mass., 1993), pp. 78–87.

Y. Mori, K. Yamauchi, K. Endo, K. Yamamura, K. Inagaki, “Development of plasma chemical vaporization machining (CVM),” in Proceedings of the Japanese Society of Precision Engineering Spring Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1991), pp. 517–518 (in Japanese).

Yoshii, K.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—an ultra precision machining with high pressure reactive plasma,” Technol. Rep. Osaka U. 43, 261–266 (1993).

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar, Kobe, Japan (Butterworth-Heinemann, Mass., 1993), pp. 78–87.

Zarowin, C.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, G. M. Sanger, eds., Proc. SPIE1333, 44–57 (1990).
[CrossRef]

Zarowin, C. B.

L. D. Bollinger, C. B. Zarowin, “Rapid, nonmechanical, damage-free figuring of optical surfaces using plasma-assisted chemical etching (PACE): Part I. Experimental Results,” in Advances in Fabrication and Metrology for Optics and Large Optics, J. B. Arnold, R. E. Parks, eds., Proc. SPIE966, 82–90 (1988).
[CrossRef]

C. B. Zarowin, L. D. Bollinger, “Rapid, nonmechanical, damage free figuring of optical surfaces using plasma assisted chemical etching (PACE): Part II. Theory and process control,” in Advances in Fabrication and Metrology for Optics and Large Optics, J. B. Arnold, R. E. Parks, eds., Proc. SPIE966, 91–97 (1988).
[CrossRef]

Appl. Opt. (5)

Int. J. Jpn. Soc. Prec. Eng. (1)

M. Negishi, M. Ando, M. Takimoto, A. Deguchi, N. Nakamura, “Studies of super-smooth polishing on aspherical surfaces,” Int. J. Jpn. Soc. Prec. Eng. 29, 1–4 (1995).

J. Jpn. Soc. Prec. Eng. (1)

S. Kawai, Y. Yamasaki, K. Ohtani, “Development of an NC aspherical lens polishing machine,” J. Jpn. Soc. Prec. Eng. 53, 1863–1868 (1987) (in Japanese).
[CrossRef]

J. Vac. Sci. Technol. (1)

R. G. Poulsen, “Plasma etching in integrated circuit manufacture—a review,” J. Vac. Sci. Technol. 14, 266–274 (1977).
[CrossRef]

Opt. Electron.-Opt. Eng. Contact (1)

S. Kawai, “Numerically controlled aspheric generater,” Opt. Electron.-Opt. Eng. Contact 26, 187–199 (1988) (in Japanese).

Opt. Eng. (1)

D. J. Bajuk, “Computer controlled generation of rotationally symmetric aspheric surfaces,” Opt. Eng. 15, 401–406 (1976).
[CrossRef]

Sov. J. Opt. Technol. (1)

A. S. Savel’ev, A. P. Bogdanov, “Automated polishing of large optical components with a small tool,” Sov. J. Opt. Technol. 52, 294–297 (1985).

Technol. Rep. Osaka U. (1)

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—an ultra precision machining with high pressure reactive plasma,” Technol. Rep. Osaka U. 43, 261–266 (1993).

Other (9)

Y. Mori, K. Yamauchi, K. Yamamura, Y. Sano, “A study on plasma chemical vaporization machining (CVM)—investigation of spatial resolving power of removal,” in Proceedings of the Japanese Society of Precision Engineering Autumn Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1992), pp. 645–646 (in Japanese).

J. Taguchi, M. Kusano, “Development of high-accuracy coordinate measuring instrument for aspheric surfaces,” in Proceedings of the Japanese Society of Precision Engineering Spring Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1991), pp. 697–698 (in Japanese).

J. M. Elson, H. E. Bennett, J. M. Bennett, “Scattering from optical surfaces,” in Applied Optics and Optical Engineering, Vol. 7, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1979), Chap. 7, pp. 191–244.
[CrossRef]

L. D. Bollinger, C. B. Zarowin, “Rapid, nonmechanical, damage-free figuring of optical surfaces using plasma-assisted chemical etching (PACE): Part I. Experimental Results,” in Advances in Fabrication and Metrology for Optics and Large Optics, J. B. Arnold, R. E. Parks, eds., Proc. SPIE966, 82–90 (1988).
[CrossRef]

C. B. Zarowin, L. D. Bollinger, “Rapid, nonmechanical, damage free figuring of optical surfaces using plasma assisted chemical etching (PACE): Part II. Theory and process control,” in Advances in Fabrication and Metrology for Optics and Large Optics, J. B. Arnold, R. E. Parks, eds., Proc. SPIE966, 91–97 (1988).
[CrossRef]

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, G. M. Sanger, eds., Proc. SPIE1333, 44–57 (1990).
[CrossRef]

Y. Mori, K. Yamauchi, K. Endo, K. Yamamura, K. Inagaki, “Development of plasma chemical vaporization machining (CVM),” in Proceedings of the Japanese Society of Precision Engineering Spring Meeting (The Japanese Society of Precision Engineering, Shinjuku, Tokyo, 1991), pp. 517–518 (in Japanese).

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar, Kobe, Japan (Butterworth-Heinemann, Mass., 1993), pp. 78–87.

R. E. Parks, Handbook of Optics Vol. 1: Fundamentals, Techniques, and Design, 2nd ed., M. Bass, E. W. V. Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Chap. 40, pp. 40.3–40.9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Schematic of the shaping method principle for the optical element in which the plasma CVM device developed in this study was used. Plasma is generated at the tip of the pipe electrode. Reaction gas is supplied to the plasma through the pipe electrode. The workpiece is scanned under a numerically controlled computer.

Fig. 2
Fig. 2

Schematic of the computer numerically controlled plasma CVM device where a pipe electrode for optical fabrication is used.

Fig. 3
Fig. 3

Schematic of the shaping of the workpiece with a curved surface. The electrode can be tilted to angle θ by controlling the servomotor.

Fig. 4
Fig. 4

Dependence of the shape of the unit stationary removal mark on the intrachamber pressure.

Fig. 5
Fig. 5

Relationship between the removal rate and the gap distance between the electrode and the workpiece surface.

Fig. 6
Fig. 6

Dependence of the shape of the unit stationary removal mark on the removal time.

Fig. 7
Fig. 7

Characteristic of the removal stability of the stationary removal. The overwritten profiles of the unit stationary removal marks are shown. The stationary workpieces were processed 12 times on one batch or on different batches.

Fig. 8
Fig. 8

Schematic of the linear scanning removal. The center of the electrode moves linearly from C to C′. (a) An area of the unit stationary removal mark and scanning path of the center of the electrode. (b) The cross section of the shape of the unit stationary removal mark.

Fig. 9
Fig. 9

Scanning path of the center of the electrode on the area scanning removal. The center of the electrode moves from A0 to B m at a constant rate. The plasma is generated at A0.

Fig. 10
Fig. 10

Relationship between the removal depth and the number of times the workpiece was scanned. A 20-mm section of the workpiece surface was removed by means of repeated back and forth scanning as shown in the inset. The removal depth at point O on the workpiece was measured.

Fig. 11
Fig. 11

Dependence of z LSCAN· v on the feed rate v of the workpiece. z LSCAN is the removal depth at point O when the workpiece moves 20 mm in the x direction relative to the electrode.

Fig. 12
Fig. 12

Comparison between the experimental shapes and the calculated shapes when the workpiece moves linearly 20 mm in the x direction at a constant feed rate of 0.01 mm/s. (a) The cross section of the removal shape in the scanning direction for y = 0 mm. (b) That of the removal shape perpendicular to the scanning direction for x = 0 mm.

Fig. 13
Fig. 13

Scanning path of the center of the electrode on the area scanning removal. Plasma was generated at A0, and the workpiece was scanned until the center of the electrode reached B m .

Fig. 14
Fig. 14

Comparison between the experimental shapes and the calculated shapes when the workpiece moves in a pattern (X a = 20 mm, Y a = 20 mm) as shown in Fig. 13 at a constant feed rate of 1 mm/s. The yz cross section passing x = 0 (a) when Δy = 2 mm and (b) when Δy = 0.2 mm. (c) The xz cross section passing y = 0 when Δy = 0.2 mm.

Fig. 15
Fig. 15

Comparison between the experimental shapes and the calculated shapes when the workpiece moves in a pattern (X a = 90 mm, Y a = 100 mm) as shown in Fig. 13 at a constant feed rate of 1 mm/s and Δy = 0.5 mm. (a) The yz cross section passing x = 0 and (b) the xz cross section passing y = 0.

Fig. 16
Fig. 16

Interference fringes of the removal shape shown in Fig. 14 when Δy = 0.2 mm. The wavelength is 633 nm.

Fig. 17
Fig. 17

Surface profiles of the resultant shape in the ±20-mm range when the large area is removed (a) in the y direction and (b) in the x direction.

Fig. 18
Fig. 18

Surface roughness of the flat portion of the removed surface shown in Fig. 15. The average roughness is 0.54 nm.

Fig. 19
Fig. 19

Controllability of removal depth and periodic waviness in area scanning removal. The relationships (a) between the maximum values for removal depth z max and the feed pitch Δy as well as feed rate v and (b) between the amplitude of periodic waviness A pw and the feed pitch Δy. The value obtained by dividing A pw by z max is not influenced by feed rate v.

Tables (1)

Tables Icon

Table 1 Experimental Conditions

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

V s = 2 π ξ A sr .
z t x i ,   y j = z s x i ,   y j t .
t E ij = Δ x / v x p ,   y q .
z t E ij x i ,   y j = z s x i ,   y j t E ij = z s x i ,   y j Δ x / v x p ,   y q .
z LSCAN x i ,   y j = k = i - m i z s x k ,   y j Δ x v x p + i - k ,   y q .
z LSCAN x i ,   y j = x i - m x i z s x ,   y j v x p + x i - x ,   y q d x .
z LSCAN x i ,   y j = 1 v x i - m x i   z s x ,   y j d x .
z LSCAN x i ,   y j = 1 v x l x r   z s x ,   y j d x .
z LSCAN , 0 x i ,   y j = 1 v x i - x b - x a x i   z s x - x a ,   y j - y a d x .
z LSCAN , n x i ,   y j = 1 v x i - x b - x a x i × z s x - x a ,   y j - y a - n Δ y d x .
z ASCAN x i ,   y j = n = 0 m   z LSCAN , n x i ,   y j .
z LSCAN = C 0 / v .
z LSCAN · v = α v C 0 , α v = 0.873 v + 0.15 - 0.059 .
z LSCAN x i ,   y j = 1 v   α v x i - m x i   z s x ,   y j d x .

Metrics