Abstract

A novel optical diagnostic technique, namely, dual-hologram shearing interferometry with regulated sensitivity, is proposed for visualization and measuring of the density gradients of compressible flows in wind tunnels. It is superior to conventional shearing interferometry in both accuracy and sensitivity. The method is especially useful for strong turbulent or unsteady regions of the flows, including shock flows. The interferometer has proved to be insensitive to mechanical vibrations and has allowed us to record holograms during the noisy wind-tunnel run. The proposed approach is demonstrated by application to a supersonic flow over spherically blunted and sharp nose-cone–cylinder models. We believe that the technique will become an effective tool for receiving optical data in many flow facilities.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Trolinger, J. E. O’Hare, “Aerodynamic holography,” Rep. AEDC-TR-70-44 (ARO, Inc., Arnold Air Force Station, Tenn., 1970).
  2. R. J. Radley, A. G. Havener, “Application of dual hologram interferometry to wind-tunnel testing,” AIAA J. 11, 1332–1333 (1973).
    [CrossRef]
  3. C. Vest, Holographic Interferometry (Wiley, New York, 1979), p. 465.
  4. W. Merzkirch, Flow Visualization (Academic, San Diego, Calif., 1987), p. 260.
  5. G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 352–357 (1997).
    [CrossRef]
  6. W. L. Howes, “Large-aperture interferometer with local reference beam,” Appl. Opt. 23, 1467–1473 (1984).
    [CrossRef] [PubMed]
  7. W. D. Buchalo, M. J. Houser, “Optical interferometry in fluid dynamics research,” Opt. Eng. 24, 455–461 (1983).
    [CrossRef]
  8. A. R. Jones, J. R. Schwar, F. J. Weinberg, “Generalizing variable shear interferometry for the study of stationary and moving refractive index fields with the use of laser light,” Proc. R. Soc. London Ser. A 322, 119–135 (1971).
    [CrossRef]
  9. O. Bringdahl, “Shearing interferometry by wavefront reconstruction,” J. Opt. Soc. Am. 58, 865–871 (1968).
    [CrossRef]
  10. A. P. Shatilov, L. T. Mustafina, B. F. Ivanov, A. F. Belozerov, Ye. S. Yushkov, “Recording of pulsed gasdynamic processes by holographic shearing interferometry,” Fluid Mech. Sov. Res. 5, 154–162 (1976).
  11. I. Kadushin, J. Rom, “Design of intermittent single jack flexible nozzle supersonic wind tunnel for Mach number 1.5 to 4.0,” Rep. 86 (Technion Institute of Technology, Haifa, Israel, 1968).
  12. G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 354–357 (1997).
    [CrossRef]
  13. W. Merzkirch, “Generalized analysis of shearing interferometers as applied for gas dynamic studies,” Appl. Opt. 13, 409–413 (1974).
    [CrossRef] [PubMed]
  14. R. D. Small, V. A. Sernas, R. H. Page, “Single beam schlieren interferometer using a Wollaston prism,” Appl. Opt. 11, 858–862 (1972).
    [CrossRef]
  15. J. Stricker, B. Zakharin, “3-D Turbulent density field diagnostics by tomographic moiré technique,” Exp. Fluids 23, 76–85 (1997).
    [CrossRef]
  16. F. Weigl, “A generalized technique of two-wavelength nondiffuse holographic interferometry,” Appl. Opt. 10, 187–192 (1971).
    [CrossRef] [PubMed]
  17. F. Weigl, “Two-wavelength holographic interferometry for transparent media using a diffraction grating,” Appl. Opt. 10, 1083–1086 (1971).
    [CrossRef] [PubMed]
  18. K. S. Mustafin, V. A. Seleznev, “Holographic interferometry with variable sensitivity,” Opt. Spectrosc. (USSR) 32, 532–535 (1972).

1997

G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 352–357 (1997).
[CrossRef]

G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 354–357 (1997).
[CrossRef]

J. Stricker, B. Zakharin, “3-D Turbulent density field diagnostics by tomographic moiré technique,” Exp. Fluids 23, 76–85 (1997).
[CrossRef]

1984

1983

W. D. Buchalo, M. J. Houser, “Optical interferometry in fluid dynamics research,” Opt. Eng. 24, 455–461 (1983).
[CrossRef]

1976

A. P. Shatilov, L. T. Mustafina, B. F. Ivanov, A. F. Belozerov, Ye. S. Yushkov, “Recording of pulsed gasdynamic processes by holographic shearing interferometry,” Fluid Mech. Sov. Res. 5, 154–162 (1976).

1974

1973

R. J. Radley, A. G. Havener, “Application of dual hologram interferometry to wind-tunnel testing,” AIAA J. 11, 1332–1333 (1973).
[CrossRef]

1972

R. D. Small, V. A. Sernas, R. H. Page, “Single beam schlieren interferometer using a Wollaston prism,” Appl. Opt. 11, 858–862 (1972).
[CrossRef]

K. S. Mustafin, V. A. Seleznev, “Holographic interferometry with variable sensitivity,” Opt. Spectrosc. (USSR) 32, 532–535 (1972).

1971

F. Weigl, “A generalized technique of two-wavelength nondiffuse holographic interferometry,” Appl. Opt. 10, 187–192 (1971).
[CrossRef] [PubMed]

F. Weigl, “Two-wavelength holographic interferometry for transparent media using a diffraction grating,” Appl. Opt. 10, 1083–1086 (1971).
[CrossRef] [PubMed]

A. R. Jones, J. R. Schwar, F. J. Weinberg, “Generalizing variable shear interferometry for the study of stationary and moving refractive index fields with the use of laser light,” Proc. R. Soc. London Ser. A 322, 119–135 (1971).
[CrossRef]

1968

Belozerov, A. F.

A. P. Shatilov, L. T. Mustafina, B. F. Ivanov, A. F. Belozerov, Ye. S. Yushkov, “Recording of pulsed gasdynamic processes by holographic shearing interferometry,” Fluid Mech. Sov. Res. 5, 154–162 (1976).

Bringdahl, O.

Buchalo, W. D.

W. D. Buchalo, M. J. Houser, “Optical interferometry in fluid dynamics research,” Opt. Eng. 24, 455–461 (1983).
[CrossRef]

Havener, A. G.

R. J. Radley, A. G. Havener, “Application of dual hologram interferometry to wind-tunnel testing,” AIAA J. 11, 1332–1333 (1973).
[CrossRef]

Houser, M. J.

W. D. Buchalo, M. J. Houser, “Optical interferometry in fluid dynamics research,” Opt. Eng. 24, 455–461 (1983).
[CrossRef]

Howes, W. L.

Ivanov, B. F.

A. P. Shatilov, L. T. Mustafina, B. F. Ivanov, A. F. Belozerov, Ye. S. Yushkov, “Recording of pulsed gasdynamic processes by holographic shearing interferometry,” Fluid Mech. Sov. Res. 5, 154–162 (1976).

Jones, A. R.

A. R. Jones, J. R. Schwar, F. J. Weinberg, “Generalizing variable shear interferometry for the study of stationary and moving refractive index fields with the use of laser light,” Proc. R. Soc. London Ser. A 322, 119–135 (1971).
[CrossRef]

Kadushin, I.

I. Kadushin, J. Rom, “Design of intermittent single jack flexible nozzle supersonic wind tunnel for Mach number 1.5 to 4.0,” Rep. 86 (Technion Institute of Technology, Haifa, Israel, 1968).

Levin, D.

G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 354–357 (1997).
[CrossRef]

G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 352–357 (1997).
[CrossRef]

Merzkirch, W.

Mustafin, K. S.

K. S. Mustafin, V. A. Seleznev, “Holographic interferometry with variable sensitivity,” Opt. Spectrosc. (USSR) 32, 532–535 (1972).

Mustafina, L. T.

A. P. Shatilov, L. T. Mustafina, B. F. Ivanov, A. F. Belozerov, Ye. S. Yushkov, “Recording of pulsed gasdynamic processes by holographic shearing interferometry,” Fluid Mech. Sov. Res. 5, 154–162 (1976).

O’Hare, J. E.

A. G. Trolinger, J. E. O’Hare, “Aerodynamic holography,” Rep. AEDC-TR-70-44 (ARO, Inc., Arnold Air Force Station, Tenn., 1970).

Page, R. H.

Radley, R. J.

R. J. Radley, A. G. Havener, “Application of dual hologram interferometry to wind-tunnel testing,” AIAA J. 11, 1332–1333 (1973).
[CrossRef]

Rom, J.

I. Kadushin, J. Rom, “Design of intermittent single jack flexible nozzle supersonic wind tunnel for Mach number 1.5 to 4.0,” Rep. 86 (Technion Institute of Technology, Haifa, Israel, 1968).

Schwar, J. R.

A. R. Jones, J. R. Schwar, F. J. Weinberg, “Generalizing variable shear interferometry for the study of stationary and moving refractive index fields with the use of laser light,” Proc. R. Soc. London Ser. A 322, 119–135 (1971).
[CrossRef]

Seleznev, V. A.

K. S. Mustafin, V. A. Seleznev, “Holographic interferometry with variable sensitivity,” Opt. Spectrosc. (USSR) 32, 532–535 (1972).

Sernas, V. A.

Shatilov, A. P.

A. P. Shatilov, L. T. Mustafina, B. F. Ivanov, A. F. Belozerov, Ye. S. Yushkov, “Recording of pulsed gasdynamic processes by holographic shearing interferometry,” Fluid Mech. Sov. Res. 5, 154–162 (1976).

Small, R. D.

Stricker, J.

J. Stricker, B. Zakharin, “3-D Turbulent density field diagnostics by tomographic moiré technique,” Exp. Fluids 23, 76–85 (1997).
[CrossRef]

G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 354–357 (1997).
[CrossRef]

G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 352–357 (1997).
[CrossRef]

Toker, G.

G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 352–357 (1997).
[CrossRef]

G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 354–357 (1997).
[CrossRef]

Trolinger, A. G.

A. G. Trolinger, J. E. O’Hare, “Aerodynamic holography,” Rep. AEDC-TR-70-44 (ARO, Inc., Arnold Air Force Station, Tenn., 1970).

Vest, C.

C. Vest, Holographic Interferometry (Wiley, New York, 1979), p. 465.

Weigl, F.

Weinberg, F. J.

A. R. Jones, J. R. Schwar, F. J. Weinberg, “Generalizing variable shear interferometry for the study of stationary and moving refractive index fields with the use of laser light,” Proc. R. Soc. London Ser. A 322, 119–135 (1971).
[CrossRef]

Yushkov, Ye. S.

A. P. Shatilov, L. T. Mustafina, B. F. Ivanov, A. F. Belozerov, Ye. S. Yushkov, “Recording of pulsed gasdynamic processes by holographic shearing interferometry,” Fluid Mech. Sov. Res. 5, 154–162 (1976).

Zakharin, B.

J. Stricker, B. Zakharin, “3-D Turbulent density field diagnostics by tomographic moiré technique,” Exp. Fluids 23, 76–85 (1997).
[CrossRef]

AIAA J.

R. J. Radley, A. G. Havener, “Application of dual hologram interferometry to wind-tunnel testing,” AIAA J. 11, 1332–1333 (1973).
[CrossRef]

Appl. Opt.

Exp. Fluids

J. Stricker, B. Zakharin, “3-D Turbulent density field diagnostics by tomographic moiré technique,” Exp. Fluids 23, 76–85 (1997).
[CrossRef]

G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 354–357 (1997).
[CrossRef]

G. Toker, D. Levin, J. Stricker, “Dual hologram technique with enhanced sensitivity for measurements of weak phase objects,” Exp. Fluids 22, 352–357 (1997).
[CrossRef]

Fluid Mech. Sov. Res.

A. P. Shatilov, L. T. Mustafina, B. F. Ivanov, A. F. Belozerov, Ye. S. Yushkov, “Recording of pulsed gasdynamic processes by holographic shearing interferometry,” Fluid Mech. Sov. Res. 5, 154–162 (1976).

J. Opt. Soc. Am.

Opt. Eng.

W. D. Buchalo, M. J. Houser, “Optical interferometry in fluid dynamics research,” Opt. Eng. 24, 455–461 (1983).
[CrossRef]

Opt. Spectrosc. (USSR)

K. S. Mustafin, V. A. Seleznev, “Holographic interferometry with variable sensitivity,” Opt. Spectrosc. (USSR) 32, 532–535 (1972).

Proc. R. Soc. London Ser. A

A. R. Jones, J. R. Schwar, F. J. Weinberg, “Generalizing variable shear interferometry for the study of stationary and moving refractive index fields with the use of laser light,” Proc. R. Soc. London Ser. A 322, 119–135 (1971).
[CrossRef]

Other

I. Kadushin, J. Rom, “Design of intermittent single jack flexible nozzle supersonic wind tunnel for Mach number 1.5 to 4.0,” Rep. 86 (Technion Institute of Technology, Haifa, Israel, 1968).

A. G. Trolinger, J. E. O’Hare, “Aerodynamic holography,” Rep. AEDC-TR-70-44 (ARO, Inc., Arnold Air Force Station, Tenn., 1970).

C. Vest, Holographic Interferometry (Wiley, New York, 1979), p. 465.

W. Merzkirch, Flow Visualization (Academic, San Diego, Calif., 1987), p. 260.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Receiver module of the holographic shearing interferometer: 1, schlieren mirror; 2, flat mirror; 3, collimating-and-imaging objective lens; 4, phase grating; 5, 7, objective lenses; 6, stop diaphragm; 8, hologram.

Fig. 2
Fig. 2

Interferograms reconstructed from a pair of master flow and no-flow–no-model holograms. Flow fields over the sharp nose 15° half-angle cone–cylinder model with a base diameter of 25 mm; Mach 2.2; shear spacing parallel to the free-stream flow velocity vector, s = 0.1 mm. a, Infinite fringe; b, c, finite-width fringe interferograms.

Fig. 3
Fig. 3

Interferograms reconstructed from a pair of master flow and no-flow holograms. Flow fields over the spherically blunted 30° half-angle cone–cylinder model with a ratio of nose radius to base radius of 0.5; Mach 2.0; infinite-width fringe interferograms. Shear spacing: a, s = 0.1; b, s = 0.2 mm.

Fig. 4
Fig. 4

Interferograms with enhanced sensitivity. Flow fields over the spherically blunted 30° half-angle cone–cylinder model with a ratio of nose radius to base radius of 0.5; Mach 2.0. Interferograms reconstructed from rerecorded holograms: a, sensitivity enhanced by a factor of 2; b, sensitivity enhanced by a factor of 4.

Fig. 5
Fig. 5

Interferograms with reduced sensitivity. Flow field over the sharp-nose 15° half-angle cone–cylinder model with a base diameter of 25 mm; Mach 2.2, coefficient of sensitivity decrease, M r = 19.41. a, Infinite-width fringe; b, finite-width fringe interferogram.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

U s , ± 1 = exp i ε x ± s / 2 ,   y + ϕ x ± s / 2 ,   y ± ψ ± 2 π Ω x ,
U c , ± 1 = exp i ϕ x ± s / 2 ,   y ± ψ ± 2 π Ω x ,
T s x ,   y 2 + exp i Δ ε + Δ ϕ - 4 π Ω x - 2 ψ + exp - i Δ ε + Δ ϕ - 4 π Ω x - 2 ψ ,
T c x ,   y 2 + exp i Δ ϕ - 4 π Ω x - 2 ψ + exp - i Δ ϕ - 4 π Ω x - 2 ψ .
2 π N x ,   y = ks   Φ x = ks K   z 1 z 2 x   ρ x ,   y ,   z d z ,
τ = τ b + β 1 - ks 2 α * 2 / 2 exp i ks α - 4 π Ω x + exp - i ks α - 4 π Ω x ,
I x ,   y = I b + γ 1 - ks 2 α * 2 / 2 cos ks α - 2 π ω y ,
2 π N x ,   y = k   z 1 z 2   K Δ ρ x ,   y ,   z d z ,
M r = λ - Λ / Λ = λ / λ eff ,
I inf 1 + cos Δ ε eff + Δ ϕ eff - 2 ψ eff ,
I inf 1 + cos Δ ε eff ,

Metrics