Abstract

We have studied both theoretically and experimentally the effect of grating tilting on the coupling between the fundamental core mode and the cladding modes in an optical fiber Bragg grating. The coupling is shown to be very sensitive on the tilting angle. It is also shown that tilting angle has to be minimized in fibers with designs to suppress the coupling between the fundamental core mode and the cladding modes. We have also studied the single, strong loss peak accompanying the Bragg reflection peak in depressed-cladding fibers, thus showing a good agreement between behavior that is measured and that is predicted theoretically.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Mizrahi, J. E. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightwave Technol. 11, 1513–1517 (1993).
    [CrossRef]
  2. F. Ouellette, J. F. Cliche, S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
    [CrossRef]
  3. T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
    [CrossRef]
  4. E. Delevaque, S. Boj, J. F. Bayon, H. Poignat, J. Le Mellot, M. Monerie, “Optical fiber design for strong gratings photo-imprinting with radiation mode suppression,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series, PD5 (Optical Society of America, Washington, D.C., 1995).
  5. L. Dong, L. Reekie, J. L. Cruz, J. E. Caplen, J. P. de Sandro, D. N. Payne, “Optical fibers with depressed claddings for suppression of coupling into cladding modes in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 64–66 (1997).
    [CrossRef]
  6. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [CrossRef]
  7. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  8. W. W. Morey, G. Meltz, J. D. Love, S. J. Hewlett, “Mode-coupling characteristics of UV-written Bragg gratings in depressed cladding fiber,” Electron. Lett. 30, 730–732 (1994).
    [CrossRef]
  9. S. J. Hewlett, J. D. Love, G. Meltz, T. J. Bailey, W. W. Morey, “Coupling characteristics of photo-induced Bragg gratings in depressed and matched cladding fiber,” Optical Quantum Electron. 28, 1641–1654 (1996).
    [CrossRef]
  10. L. Dong, L. Reekie, J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33, 1897–1898 (1997).
    [CrossRef]

1997 (2)

L. Dong, L. Reekie, J. L. Cruz, J. E. Caplen, J. P. de Sandro, D. N. Payne, “Optical fibers with depressed claddings for suppression of coupling into cladding modes in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 64–66 (1997).
[CrossRef]

L. Dong, L. Reekie, J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33, 1897–1898 (1997).
[CrossRef]

1996 (3)

T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
[CrossRef]

S. J. Hewlett, J. D. Love, G. Meltz, T. J. Bailey, W. W. Morey, “Coupling characteristics of photo-induced Bragg gratings in depressed and matched cladding fiber,” Optical Quantum Electron. 28, 1641–1654 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

1994 (2)

W. W. Morey, G. Meltz, J. D. Love, S. J. Hewlett, “Mode-coupling characteristics of UV-written Bragg gratings in depressed cladding fiber,” Electron. Lett. 30, 730–732 (1994).
[CrossRef]

F. Ouellette, J. F. Cliche, S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
[CrossRef]

1993 (1)

V. Mizrahi, J. E. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightwave Technol. 11, 1513–1517 (1993).
[CrossRef]

Bailey, T. J.

S. J. Hewlett, J. D. Love, G. Meltz, T. J. Bailey, W. W. Morey, “Coupling characteristics of photo-induced Bragg gratings in depressed and matched cladding fiber,” Optical Quantum Electron. 28, 1641–1654 (1996).
[CrossRef]

Bayon, J. F.

E. Delevaque, S. Boj, J. F. Bayon, H. Poignat, J. Le Mellot, M. Monerie, “Optical fiber design for strong gratings photo-imprinting with radiation mode suppression,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series, PD5 (Optical Society of America, Washington, D.C., 1995).

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Boj, S.

E. Delevaque, S. Boj, J. F. Bayon, H. Poignat, J. Le Mellot, M. Monerie, “Optical fiber design for strong gratings photo-imprinting with radiation mode suppression,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series, PD5 (Optical Society of America, Washington, D.C., 1995).

Caplen, J. E.

L. Dong, L. Reekie, J. L. Cruz, J. E. Caplen, J. P. de Sandro, D. N. Payne, “Optical fibers with depressed claddings for suppression of coupling into cladding modes in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 64–66 (1997).
[CrossRef]

Cliche, J. F.

F. Ouellette, J. F. Cliche, S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
[CrossRef]

Cruz, J. L.

L. Dong, L. Reekie, J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33, 1897–1898 (1997).
[CrossRef]

L. Dong, L. Reekie, J. L. Cruz, J. E. Caplen, J. P. de Sandro, D. N. Payne, “Optical fibers with depressed claddings for suppression of coupling into cladding modes in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 64–66 (1997).
[CrossRef]

de Sandro, J. P.

L. Dong, L. Reekie, J. L. Cruz, J. E. Caplen, J. P. de Sandro, D. N. Payne, “Optical fibers with depressed claddings for suppression of coupling into cladding modes in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 64–66 (1997).
[CrossRef]

Delevaque, E.

E. Delevaque, S. Boj, J. F. Bayon, H. Poignat, J. Le Mellot, M. Monerie, “Optical fiber design for strong gratings photo-imprinting with radiation mode suppression,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series, PD5 (Optical Society of America, Washington, D.C., 1995).

Dong, L.

L. Dong, L. Reekie, J. L. Cruz, J. E. Caplen, J. P. de Sandro, D. N. Payne, “Optical fibers with depressed claddings for suppression of coupling into cladding modes in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 64–66 (1997).
[CrossRef]

L. Dong, L. Reekie, J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33, 1897–1898 (1997).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
[CrossRef]

Gagnon, S.

F. Ouellette, J. F. Cliche, S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
[CrossRef]

Hewlett, S. J.

S. J. Hewlett, J. D. Love, G. Meltz, T. J. Bailey, W. W. Morey, “Coupling characteristics of photo-induced Bragg gratings in depressed and matched cladding fiber,” Optical Quantum Electron. 28, 1641–1654 (1996).
[CrossRef]

W. W. Morey, G. Meltz, J. D. Love, S. J. Hewlett, “Mode-coupling characteristics of UV-written Bragg gratings in depressed cladding fiber,” Electron. Lett. 30, 730–732 (1994).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Le Mellot, J.

E. Delevaque, S. Boj, J. F. Bayon, H. Poignat, J. Le Mellot, M. Monerie, “Optical fiber design for strong gratings photo-imprinting with radiation mode suppression,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series, PD5 (Optical Society of America, Washington, D.C., 1995).

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Love, J. D.

S. J. Hewlett, J. D. Love, G. Meltz, T. J. Bailey, W. W. Morey, “Coupling characteristics of photo-induced Bragg gratings in depressed and matched cladding fiber,” Optical Quantum Electron. 28, 1641–1654 (1996).
[CrossRef]

W. W. Morey, G. Meltz, J. D. Love, S. J. Hewlett, “Mode-coupling characteristics of UV-written Bragg gratings in depressed cladding fiber,” Electron. Lett. 30, 730–732 (1994).
[CrossRef]

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Meltz, G.

S. J. Hewlett, J. D. Love, G. Meltz, T. J. Bailey, W. W. Morey, “Coupling characteristics of photo-induced Bragg gratings in depressed and matched cladding fiber,” Optical Quantum Electron. 28, 1641–1654 (1996).
[CrossRef]

W. W. Morey, G. Meltz, J. D. Love, S. J. Hewlett, “Mode-coupling characteristics of UV-written Bragg gratings in depressed cladding fiber,” Electron. Lett. 30, 730–732 (1994).
[CrossRef]

Mizrahi, V.

V. Mizrahi, J. E. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightwave Technol. 11, 1513–1517 (1993).
[CrossRef]

Monerie, M.

E. Delevaque, S. Boj, J. F. Bayon, H. Poignat, J. Le Mellot, M. Monerie, “Optical fiber design for strong gratings photo-imprinting with radiation mode suppression,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series, PD5 (Optical Society of America, Washington, D.C., 1995).

Morey, W. W.

S. J. Hewlett, J. D. Love, G. Meltz, T. J. Bailey, W. W. Morey, “Coupling characteristics of photo-induced Bragg gratings in depressed and matched cladding fiber,” Optical Quantum Electron. 28, 1641–1654 (1996).
[CrossRef]

W. W. Morey, G. Meltz, J. D. Love, S. J. Hewlett, “Mode-coupling characteristics of UV-written Bragg gratings in depressed cladding fiber,” Electron. Lett. 30, 730–732 (1994).
[CrossRef]

Ouellette, F.

F. Ouellette, J. F. Cliche, S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
[CrossRef]

Payne, D. N.

L. Dong, L. Reekie, J. L. Cruz, J. E. Caplen, J. P. de Sandro, D. N. Payne, “Optical fibers with depressed claddings for suppression of coupling into cladding modes in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 64–66 (1997).
[CrossRef]

Poignat, H.

E. Delevaque, S. Boj, J. F. Bayon, H. Poignat, J. Le Mellot, M. Monerie, “Optical fiber design for strong gratings photo-imprinting with radiation mode suppression,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series, PD5 (Optical Society of America, Washington, D.C., 1995).

Reekie, L.

L. Dong, L. Reekie, J. L. Cruz, J. E. Caplen, J. P. de Sandro, D. N. Payne, “Optical fibers with depressed claddings for suppression of coupling into cladding modes in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 64–66 (1997).
[CrossRef]

L. Dong, L. Reekie, J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33, 1897–1898 (1997).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
[CrossRef]

V. Mizrahi, J. E. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightwave Technol. 11, 1513–1517 (1993).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Electron. Lett. (2)

W. W. Morey, G. Meltz, J. D. Love, S. J. Hewlett, “Mode-coupling characteristics of UV-written Bragg gratings in depressed cladding fiber,” Electron. Lett. 30, 730–732 (1994).
[CrossRef]

L. Dong, L. Reekie, J. L. Cruz, “Long period gratings formed in depressed cladding fibers,” Electron. Lett. 33, 1897–1898 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

L. Dong, L. Reekie, J. L. Cruz, J. E. Caplen, J. P. de Sandro, D. N. Payne, “Optical fibers with depressed claddings for suppression of coupling into cladding modes in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9, 64–66 (1997).
[CrossRef]

J. Lightwave Technol. (3)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

V. Mizrahi, J. E. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightwave Technol. 11, 1513–1517 (1993).
[CrossRef]

F. Ouellette, J. F. Cliche, S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

Optical Quantum Electron. (1)

S. J. Hewlett, J. D. Love, G. Meltz, T. J. Bailey, W. W. Morey, “Coupling characteristics of photo-induced Bragg gratings in depressed and matched cladding fiber,” Optical Quantum Electron. 28, 1641–1654 (1996).
[CrossRef]

Other (2)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

E. Delevaque, S. Boj, J. F. Bayon, H. Poignat, J. Le Mellot, M. Monerie, “Optical fiber design for strong gratings photo-imprinting with radiation mode suppression,” in Optical Fiber Communication Conference, Vol. 8 of 1995 OSA Technical Digest Series, PD5 (Optical Society of America, Washington, D.C., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cladding-mode coupling strength at different tilting angles in a fiber with a photosensitive core. The fiber has a Δn of 0.00539, a ρ of 3.83 μm, and an a of 62.5 μm.

Fig. 2
Fig. 2

Cladding-mode coupling strength at different tilting angles in a fiber with a photosensitive core and a photosensitive cladding. The fiber has a Δn of 0.00539, a ρ of 3.83 μm, and an a of 62.5 μm. The fiber also has a photosensitive cladding twice the thickness of the core radius and a photosensitivity the same as that in the fiber core.

Fig. 3
Fig. 3

LP 0m cladding-mode coupling at different tilting angles in the fiber with a photosensitive core and cladding.

Fig. 4
Fig. 4

LP 1m cladding-mode coupling at different tilting angles in the fiber with a photosensitive core and cladding.

Fig. 5
Fig. 5

Largest peak loss due to coupling into the cladding modes in an initially 30-dB grating in the fiber with a photosensitive core and cladding.

Fig. 6
Fig. 6

Dependence of the Bragg and the ghost peak in a depressed-cladding fiber. The fiber has a Δn cl of -0.01, a Δn co of 0.012, a d of 10 μm, a ρ of 3.3 μm, and a fiber diameter of 100 μm. Also plotted is the measured data for both Bragg and ghost peak in the same fiber.

Fig. 7
Fig. 7

Loss due to the ghost-mode coupling in an initially 30-dB gratings in the depressed-cladding fiber. The fiber has a Δn cl of -0.01, a Δn co of 0.012, a d of 10 μm, a ρ of 3.3 μm, and a fiber diameter of 100 μm.

Fig. 8
Fig. 8

Measured cladding-mode coupling in an untilted grating in fiber No. 1 with a photosensitive core with different surrounding media. Fiber No. 1 has a Δn of 0.011, a ρ of 3.0 μm, and a cladding diameter of 80 μm.

Fig. 9
Fig. 9

Measured transmission of a tilted grating with a tilting angle of 1.16° in Fiber No. 2. The fiber has a Δn of 0.00539, a ρ of 3.83 μm, and an a of 62.5 μm.

Fig. 10
Fig. 10

Measured cladding modes coupling in tilted gratings in Fiber No. 2. The fiber has a Δn of 0.00539, a ρ of 3.83 μm, and an a of 62.5 μm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n mod   cos 2 π z / Λ + Φ r ,   φ ,   θ ,
Φ = 2 π r   cos   φ   tan   θ Λ .
Δ N mod = 0 2 π 0   Δ n mod Ψ r Ψ lm r ,   φ exp j Φ r d r d φ .
OL = 0 2 π 0   Ψ r Ψ nl r ,   φ exp j Φ r d r d φ ,
Δ N mod = Δ n mod OL .
R = tanh 2 KL
K = π Δ N mod λ .

Metrics