Abstract

In some of the future laser communication satellites, it is plausible to assume that tracking and communication receivers will use the same detector array. The reason for dual use of the detector is to design simpler and less expensive satellites. Satellites vibrate continually because of their subsystems and environmental sources. The vibrations cause nonuniform spreading of the received energy on the detector array. In view of this, the information from the tracking system is used to adapt individually the communication signal gain of each of the detectors in the array. This adaptation of the gains improves communication system performance. It is important to emphasize that the communication performance improvement is achieved only by gain adaptation. Any additional vibrations decrease the tracking and laser pointing system performances, which decrease the return communication performances (two-way communication). A comparison of practical communication systems is presented. The novelty of this research is the utilization of natural satellite vibrations to improve the communication system performance.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Arnon, N. S. Kopeika, “Laser satellite communication networks-vibration effects and possible solutions,” Proc. IEEE 85, 1646–1661 (1997).
    [CrossRef]
  2. B. I. Edelson, G. Hyde, “Laser satellite communications, program technology and applications,” report of the IEEE-USA Aerospace Policy Committee (Institute of Electrical and Electronics Engineers, New York, 1996).
  3. Motorola Global Communication, “Application for Celestri multimedia LEO system” before the Federal Communication Commission, Washington, D.C. (June1997).
  4. S. Arnon, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations: analog case,” Opt. Eng. 36, 175–182 (1997).
    [CrossRef]
  5. S. Arnon, S. Rotman, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations: digital case,” Opt. Eng. 36, 3148–3157 (1997).
    [CrossRef]
  6. M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected papers on Free-Space Laser Communications II, D. L. Begly, B. J. Thompson, eds., Vol. MS100 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., (1994), pp. 389–398.
  7. V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
    [CrossRef]
  8. C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
    [CrossRef]
  9. S. Arnon, N. S. Kopeika, “Adaptive suboptimum detection of an optical pulse-position modulation signal with a detection matrix and centroid tracking,” J. Opt. Soc. Am. 15, 443–448 (1998).
    [CrossRef]
  10. S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Norwood, Mass., 1995).
  11. L. Kazovsky, S. Benedetto, A. Willner, Optical Fiber Communication Systems (Artech House, Norwood, Mass., 1996), Chap. 1, pp. 78–79; Chap. 3, pp. 163–252.
  12. R. M. Gagliardi, S. Karp, Optical Communication, 2nd ed. (Wiley, New York, 1995), Chap. 3, p. 81; Chap. 4, pp. 119–150.
  13. V. A. Skormin, C. R. Herman, M. A. Tascillo, D. J. Nicholson, “Mathematical modeling and simulation analysis of a pointing, acquisition, and tracking system for laser based intersatellite communication,” Opt. Eng. 32, 2749–2763 (1993).
    [CrossRef]

1998 (1)

S. Arnon, N. S. Kopeika, “Adaptive suboptimum detection of an optical pulse-position modulation signal with a detection matrix and centroid tracking,” J. Opt. Soc. Am. 15, 443–448 (1998).
[CrossRef]

1997 (3)

S. Arnon, N. S. Kopeika, “Laser satellite communication networks-vibration effects and possible solutions,” Proc. IEEE 85, 1646–1661 (1997).
[CrossRef]

S. Arnon, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations: analog case,” Opt. Eng. 36, 175–182 (1997).
[CrossRef]

S. Arnon, S. Rotman, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations: digital case,” Opt. Eng. 36, 3148–3157 (1997).
[CrossRef]

1995 (1)

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

1993 (1)

V. A. Skormin, C. R. Herman, M. A. Tascillo, D. J. Nicholson, “Mathematical modeling and simulation analysis of a pointing, acquisition, and tracking system for laser based intersatellite communication,” Opt. Eng. 32, 2749–2763 (1993).
[CrossRef]

1989 (1)

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

Arnon, S.

S. Arnon, N. S. Kopeika, “Adaptive suboptimum detection of an optical pulse-position modulation signal with a detection matrix and centroid tracking,” J. Opt. Soc. Am. 15, 443–448 (1998).
[CrossRef]

S. Arnon, N. S. Kopeika, “Laser satellite communication networks-vibration effects and possible solutions,” Proc. IEEE 85, 1646–1661 (1997).
[CrossRef]

S. Arnon, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations: analog case,” Opt. Eng. 36, 175–182 (1997).
[CrossRef]

S. Arnon, S. Rotman, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations: digital case,” Opt. Eng. 36, 3148–3157 (1997).
[CrossRef]

Benedetto, S.

L. Kazovsky, S. Benedetto, A. Willner, Optical Fiber Communication Systems (Artech House, Norwood, Mass., 1996), Chap. 1, pp. 78–79; Chap. 3, pp. 163–252.

Busch, T. E.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

Casey, W. L.

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Norwood, Mass., 1995).

Chen, C. C.

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

Edelson, B. I.

B. I. Edelson, G. Hyde, “Laser satellite communications, program technology and applications,” report of the IEEE-USA Aerospace Policy Committee (Institute of Electrical and Electronics Engineers, New York, 1996).

Gagliardi, R. M.

R. M. Gagliardi, S. Karp, Optical Communication, 2nd ed. (Wiley, New York, 1995), Chap. 3, p. 81; Chap. 4, pp. 119–150.

Gardner, C. S.

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

Herman, C. R.

V. A. Skormin, C. R. Herman, M. A. Tascillo, D. J. Nicholson, “Mathematical modeling and simulation analysis of a pointing, acquisition, and tracking system for laser based intersatellite communication,” Opt. Eng. 32, 2749–2763 (1993).
[CrossRef]

Hyde, G.

B. I. Edelson, G. Hyde, “Laser satellite communications, program technology and applications,” report of the IEEE-USA Aerospace Policy Committee (Institute of Electrical and Electronics Engineers, New York, 1996).

Karp, S.

R. M. Gagliardi, S. Karp, Optical Communication, 2nd ed. (Wiley, New York, 1995), Chap. 3, p. 81; Chap. 4, pp. 119–150.

Kazovsky, L.

L. Kazovsky, S. Benedetto, A. Willner, Optical Fiber Communication Systems (Artech House, Norwood, Mass., 1996), Chap. 1, pp. 78–79; Chap. 3, pp. 163–252.

Kopeika, N. S.

S. Arnon, N. S. Kopeika, “Adaptive suboptimum detection of an optical pulse-position modulation signal with a detection matrix and centroid tracking,” J. Opt. Soc. Am. 15, 443–448 (1998).
[CrossRef]

S. Arnon, N. S. Kopeika, “Laser satellite communication networks-vibration effects and possible solutions,” Proc. IEEE 85, 1646–1661 (1997).
[CrossRef]

S. Arnon, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations: analog case,” Opt. Eng. 36, 175–182 (1997).
[CrossRef]

S. Arnon, S. Rotman, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations: digital case,” Opt. Eng. 36, 3148–3157 (1997).
[CrossRef]

Lambert, S. G.

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Norwood, Mass., 1995).

Nicholson, D. J.

V. A. Skormin, C. R. Herman, M. A. Tascillo, D. J. Nicholson, “Mathematical modeling and simulation analysis of a pointing, acquisition, and tracking system for laser based intersatellite communication,” Opt. Eng. 32, 2749–2763 (1993).
[CrossRef]

Rotman, S.

S. Arnon, S. Rotman, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations: digital case,” Opt. Eng. 36, 3148–3157 (1997).
[CrossRef]

Skormin, V. A.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

V. A. Skormin, C. R. Herman, M. A. Tascillo, D. J. Nicholson, “Mathematical modeling and simulation analysis of a pointing, acquisition, and tracking system for laser based intersatellite communication,” Opt. Eng. 32, 2749–2763 (1993).
[CrossRef]

Tascillo, M. A.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

V. A. Skormin, C. R. Herman, M. A. Tascillo, D. J. Nicholson, “Mathematical modeling and simulation analysis of a pointing, acquisition, and tracking system for laser based intersatellite communication,” Opt. Eng. 32, 2749–2763 (1993).
[CrossRef]

Tunbridge, D. E. L.

M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected papers on Free-Space Laser Communications II, D. L. Begly, B. J. Thompson, eds., Vol. MS100 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., (1994), pp. 389–398.

van Holtz, L.

M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected papers on Free-Space Laser Communications II, D. L. Begly, B. J. Thompson, eds., Vol. MS100 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., (1994), pp. 389–398.

Vermeulen, H. C.

M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected papers on Free-Space Laser Communications II, D. L. Begly, B. J. Thompson, eds., Vol. MS100 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., (1994), pp. 389–398.

Willner, A.

L. Kazovsky, S. Benedetto, A. Willner, Optical Fiber Communication Systems (Artech House, Norwood, Mass., 1996), Chap. 1, pp. 78–79; Chap. 3, pp. 163–252.

Wittig, M.

M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected papers on Free-Space Laser Communications II, D. L. Begly, B. J. Thompson, eds., Vol. MS100 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., (1994), pp. 389–398.

IEEE Trans. Commun. (1)

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

S. Arnon, N. S. Kopeika, “Adaptive suboptimum detection of an optical pulse-position modulation signal with a detection matrix and centroid tracking,” J. Opt. Soc. Am. 15, 443–448 (1998).
[CrossRef]

Opt. Eng. (4)

S. Arnon, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations: analog case,” Opt. Eng. 36, 175–182 (1997).
[CrossRef]

S. Arnon, S. Rotman, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations: digital case,” Opt. Eng. 36, 3148–3157 (1997).
[CrossRef]

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

V. A. Skormin, C. R. Herman, M. A. Tascillo, D. J. Nicholson, “Mathematical modeling and simulation analysis of a pointing, acquisition, and tracking system for laser based intersatellite communication,” Opt. Eng. 32, 2749–2763 (1993).
[CrossRef]

Proc. IEEE (1)

S. Arnon, N. S. Kopeika, “Laser satellite communication networks-vibration effects and possible solutions,” Proc. IEEE 85, 1646–1661 (1997).
[CrossRef]

Other (6)

B. I. Edelson, G. Hyde, “Laser satellite communications, program technology and applications,” report of the IEEE-USA Aerospace Policy Committee (Institute of Electrical and Electronics Engineers, New York, 1996).

Motorola Global Communication, “Application for Celestri multimedia LEO system” before the Federal Communication Commission, Washington, D.C. (June1997).

M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected papers on Free-Space Laser Communications II, D. L. Begly, B. J. Thompson, eds., Vol. MS100 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., (1994), pp. 389–398.

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Norwood, Mass., 1995).

L. Kazovsky, S. Benedetto, A. Willner, Optical Fiber Communication Systems (Artech House, Norwood, Mass., 1996), Chap. 1, pp. 78–79; Chap. 3, pp. 163–252.

R. M. Gagliardi, S. Karp, Optical Communication, 2nd ed. (Wiley, New York, 1995), Chap. 3, p. 81; Chap. 4, pp. 119–150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Vibration and impact sources.

Fig. 2
Fig. 2

Adaptive receiver.

Fig. 3
Fig. 3

Temporal response of a fast steering mirror as a function of time.

Fig. 4
Fig. 4

Average BER as a function of impact/s. T d is equal to 0.5 ms.

Tables (1)

Tables Icon

Table 1 Practical System Parameters

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

P R = P T η R η T G R G T λ / 4 π z 2 ,
G R = π D R λ 2 ,
R S = 1.22 λ f c / D R ,
f R = P R / π Rs 2 ,
P 1 = f R 0.5 [ aRsa + bRsb + 2 ab + Rs 2 ( sin   2 + sin   1 ) ] f R 0.5 ( aRsa + bRsb + 2 ab + Rs 2 ( sin   2 - sin   1 ) + π Rs 2   b < 0 b 0 .
P 2 = f R 0.5 [ - aRsa + bRsb + 2 ab + Rs 2 sin   1 - sin   2 ] f R 0.5 - aRsa + bRsb - 2 ab - Rs 2 ( sin   1 + sin   2 ) + π Rs 2   b < 0 b 0 .
P 4 = - f R 0.5 aRsa + bRsb - 2 ab + Rs 2 sin   2 + sin   1 - π Rs 2 - f R 0.5 [ aRsa + bRsb - 2 ab + Rs 2 sin   2 - sin   1 ] b < 0 b 0 .
P 4 = - f R 0.5 - aRsa + bRsb + 2 ab + Rs 2 sin   1 - sin   2 - π Rs 2 - f R 0.5 [ - aRsa + bRsb + 2 ab - Rs 2 sin   2 + sin   1 ]   b < 0 b 0 ,
Rsa = Rs 2 - a 2 0.5 ,
Rsb = Rs 2 - b 2 0.5 ,
sin   1 = arc   sin Rsb / Rs ,
sin   2 = arc   sin a / Rs .
σ 0 2 1 = 2 qRP B F M M 2 B + 2 qI D F M M 2 B + 4 k B BT e R L ,
σ 1 2 i = σ 0 2 1 + 2 qRP i F M M 2 B + 10 RIN / 10 RMP i 2 B ,   i = 1     4 ,
μ 1 i = RMP i ,   i = 1     4 .
μ 1 i = 0 ,   i = 1     4 .
R = q η / h ν ,
F M = K eff M + 1 - K eff 2 - ( 1 / M ,
μ 1 = i = 1 4   A i μ 1 i ,
μ 0 = i = 1 4   A i μ 0 i .
σ 1 = i = 1 4 A i σ 1 i 2 1 / 2 .
σ 0 = i = 1 4 A i σ 0 i 2 1 / 2 = σ 0 1 i = 1 4 A i 2 1 / 2 .
BER = N A 1 - α N - exp - x - μ 1 2 2 σ 1 2 × - x exp - y - μ 0 2 2 σ 0 2 d y N - 1 d x ,
N A = N 2 N - 1 ,
α N = 1 2 π   σ 1 2 π   σ 0 N - 1 .
A i = μ 1 i - μ 0 i 2 σ 0 2 i .
ABER = 1 - nT d BER s + n   0 T d BER t d t ,
nT d 1 .

Metrics