Abstract

A free-path-length distribution function (FPDF) of multiply backscattered light is theoretically derived for a fractal aggregate of particles. An effective mean-free path-length l D is newly introduced as a measure of randomness analogous with a homogeneously random medium. We confirm the validity of the FPDF by demonstrating agreement between the dimensions designed for a particle distribution generated by a random walk based on the derived FPDF and estimated by the radius of gyration method. The FPDF is applied to Monte Carlo simulations for copolarized multiply backscattered light from the fractal aggregate of particles. It is shown that a copolarized intensity peak of enhanced backscattering in the far field decreases in accordance with θ2-D and has an angular width of λ/l D. This spatial feature of the backscattering enhancement corresponds to that of the copolarized intensity peak produced from a homogeneously random medium with a dimension of D = 3. As a result, the validity of the model for the fractal structure of particle aggregates and the applicability of the derived FPDF are confirmed by the numerical results.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription