Abstract

We describe an operational, self-contained, fully autonomous Raman lidar system that has been developed for unattended, around-the-clock atmospheric profiling of water vapor, aerosols, and clouds. During a 1996 three-week intensive observational period, the system operated during all periods of good weather (339 out of 504 h), including one continuous five-day period. The system is based on a dual-field-of-view design that provides excellent daytime capability without sacrificing nighttime performance. It is fully computer automated and runs unattended following a simple, brief (∼5-min) start-up period. We discuss the theory and design of the system and present detailed analyses of the derivation of water-vapor profiles from the lidar measurements.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Atmospheric Radiation Measurement Program Plan, DOE/ER-0441 (U.S. Department of Energy, Washington, D.C., 1990).
  2. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
    [CrossRef]
  3. J. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
    [CrossRef]
  4. J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in Sixteenth International Laser Radar Conference, M. P. McCormick, ed., NASA Conf. Pub. 3158 (NASA, Washington, D.C., 1992), Pt. 2, pp. 667–670.
  5. J. E. M. Goldsmith, S. E. Bisson, “Daytime Raman lidar profiling of atmospheric water vapor,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, pp. 156–158.
  6. J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
    [CrossRef]
  7. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef] [PubMed]
  8. American National Standard for the Safe Use of Lasers, ANSI Z136.1-1993 (Laser Institute of America, Orlando, Fla., 1993).
  9. E. P. Shettle, R. W. Fenn, “Models of the atmospheric aerosols and their optical properties,” in AGARD Conference Proceedings No. 183, AGARD-CP-183, ADA028-615 (U.S. National Technical Information Service, Springfield, Va., 1975).
  10. E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL TR-79-0214, ADA 085921 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

1994 (1)

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

1992 (1)

1970 (1)

J. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

1969 (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Bisson, S. E.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, “Daytime Raman lidar profiling of atmospheric water vapor,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, pp. 156–158.

Cooney, J.

J. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

Evans, K. D.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models of the atmospheric aerosols and their optical properties,” in AGARD Conference Proceedings No. 183, AGARD-CP-183, ADA028-615 (U.S. National Technical Information Service, Springfield, Va., 1975).

E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL TR-79-0214, ADA 085921 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Ferrare, R. A.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in Sixteenth International Laser Radar Conference, M. P. McCormick, ed., NASA Conf. Pub. 3158 (NASA, Washington, D.C., 1992), Pt. 2, pp. 667–670.

Goldsmith, J. E. M.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, “Daytime Raman lidar profiling of atmospheric water vapor,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, pp. 156–158.

J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in Sixteenth International Laser Radar Conference, M. P. McCormick, ed., NASA Conf. Pub. 3158 (NASA, Washington, D.C., 1992), Pt. 2, pp. 667–670.

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

McCormick, M. P.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Melfi, S. H.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models of the atmospheric aerosols and their optical properties,” in AGARD Conference Proceedings No. 183, AGARD-CP-183, ADA028-615 (U.S. National Technical Information Service, Springfield, Va., 1975).

E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL TR-79-0214, ADA 085921 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Whiteman, D. N.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

J. Appl. Meteorol. (1)

J. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

Other (6)

J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in Sixteenth International Laser Radar Conference, M. P. McCormick, ed., NASA Conf. Pub. 3158 (NASA, Washington, D.C., 1992), Pt. 2, pp. 667–670.

J. E. M. Goldsmith, S. E. Bisson, “Daytime Raman lidar profiling of atmospheric water vapor,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, pp. 156–158.

American National Standard for the Safe Use of Lasers, ANSI Z136.1-1993 (Laser Institute of America, Orlando, Fla., 1993).

E. P. Shettle, R. W. Fenn, “Models of the atmospheric aerosols and their optical properties,” in AGARD Conference Proceedings No. 183, AGARD-CP-183, ADA028-615 (U.S. National Technical Information Service, Springfield, Va., 1975).

E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL TR-79-0214, ADA 085921 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Atmospheric Radiation Measurement Program Plan, DOE/ER-0441 (U.S. Department of Energy, Washington, D.C., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Basic Raman lidar concept.

Fig. 2
Fig. 2

Layout of the Raman lidar system (side view). HVAC, heating, ventilation, air conditioning.

Fig. 3
Fig. 3

Optical layout of the Raman lidar receiver.

Fig. 4
Fig. 4

Photon counts accumulated during a 5-min nighttime data-acquisition period in the indicated signal channels. AGL, above ground level.

Fig. 5
Fig. 5

Photon counts accumulated during 5-min daytime data-acquisition periods in the nitrogen NFOV channel and demonstration of the dead-time correction.

Fig. 6
Fig. 6

Influences on characteristic range dependence of the nitrogen NFOV curve shown in Fig. 4: (a) background subtracted, range squared corrected; (b) atmospheric attenuation removed by use of model atmosphere; and (c) atmospheric density variation in backscatter removed by use of model atmosphere.

Fig. 7
Fig. 7

Influences on characteristic range dependence of the nitrogen WFOV curve shown in Fig. 4: (a) background subtracted, range squared corrected; (b) atmospheric attenuation removed by use of model atmosphere; and (c) atmospheric density variation in backscatter removed by use of model atmosphere.

Fig. 8
Fig. 8

Range-dependent calibration ratios obtained for the NFOV and WFOV channels by use of nitrogen filters in the water-vapor channels. Solid curves, 10-min measurement; dashed curves, functional forms used to represent calibration ratios.

Fig. 9
Fig. 9

Nighttime profiles of water vapor recorded at the CART site at 6:30 a.m. (local time) on 28 September 1996. The logarithmic abscissa emphasizes the performance of the Raman lidar system in the upper troposphere.

Fig. 10
Fig. 10

Daytime profiles of water vapor recorded at the CART site at 12:30 p.m. (local time) on 9 September 1996.

Fig. 11
Fig. 11

Nighttime calibration factors obtained from Raman lidar and radiosonde comparisons performed during the September 1996 water-vapor IOP.

Fig. 12
Fig. 12

False-color image portraying the variation in the water-vapor mixing ratio over the full 24-h period on 10 September 1996. Each vertical stripe in the image is obtained from a 10-min average, with 78-m vertical resolution from 0 to 0.2 km, 39-m vertical resolution from 0.2 to 3.7 km, and 78-m vertical resolution from 3.7 to 6.0 km. Local time can be obtained by subtracting 5 h from UT.

Fig. 13
Fig. 13

False-color image portraying the variation in the water-vapor mixing ratio over the 5-day period from 20 to 24 September 1996. Each vertical stripe in the image is obtained from a 10-min average, with 78-m vertical resolution from 0 to 0.2 km, 39-m vertical resolution from 0.2 to 3.7 km, and 78-m vertical resolution from 3.7 to 6.0 km. Local time can be obtained by subtracting 5 h from UT.

Fig. 14
Fig. 14

Nighttime false-color images of the water-vapor mixing ratio for the NFOV (top) and WFOV (bottom) channels obtained on 5 October 1996. In both images the vertical stripes are obtained from 2-min averages, with 78-m vertical resolution from 0 to 0.2 km and 39-m vertical resolution from 0.2 to 2.0 km.

Fig. 15
Fig. 15

Fractional statistical errors in the water-vapor mixing ratio for the indicated channels, obtained by use of 10-min data sets at 78-m vertical resolution (recorded on 28 September 1996, at 6:30 a.m. local time for the nighttime set and at 9:30 a.m. local time for the daytime set).

Fig. 16
Fig. 16

Fractional statistical errors in the water-vapor mixing ratio for the indicated channels, obtained by use of 10-min data sets at 78-m vertical resolution (recorded on 28 September 1996 at 9:30 a.m. local time). The WFOV normal filters have a bandwidth of 0.4 nm, the WFOV broad filters have a bandwidth of 1.2 nm, and the NFOV filters have a bandwidth of 0.4 nm.

Tables (2)

Tables Icon

Table 1 Raman Lidar Excitation and Detection Wavelengths

Tables Icon

Table 2 Lidar Specifications

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

w z     n wv z n nit z .
S i , λ F z = I 0 k i , λ F z 2   T i , λ F z O i , λ F z σ i π n z ,   λ F × q λ 0 ,   z q λ F ,   z ,
R meas z = S wv , λ wv z S nit , λ nit z = k meas T wv , λ wv z T nit , λ nit z O wv , λ wv z O nit , λ nit z q λ wv ,   z q λ nit ,   z n z ,   λ wv n z ,   λ nit .
R cal z = S wv , λ nit z S nit , λ nit z = k cal T wv , λ nit z T nit , λ nit z O wv , λ nit z O nit , λ nit z .
R meas z R cal z = k meas k cal T wv , λ wv z T wv , λ nit z O wv , λ wv z O wv , λ nit z q λ wv ,   z q λ nit ,   z n z ,   λ wv n z ,   λ nit .
N real = N meas 1 - ρ N meas

Metrics