Abstract

We use remote-sensing reflectance from particulate R rs to determine the volume absorption coefficient a of turbid water in the 400 < λ < 700-nm spectral region. The calculated and measured values of a(λ) show good agreement for 0.5 < a < 10 (m-1). To determine R rs from a particulate, we needed to make corrections for remote-sensing reflectance owing to surface roughness S rs. We determined the average spectral distribution of S rs from the difference in total remote-sensing reflectance measured with and without polarization. The spectral shape of S rs showed an excellent fit to theoretical formulas for glare based on Rayleigh and aerosol scattering from the atmosphere.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, O. B. Brown, M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
    [CrossRef] [PubMed]
  2. A. Y. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  3. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
    [CrossRef]
  4. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996).
    [CrossRef] [PubMed]
  5. M. Sydor, R. A. Arnone, “Effects of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
    [CrossRef]
  6. S. Tassan, “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33, 2369–2378 (1994).
    [CrossRef] [PubMed]
  7. C. D. Mobley, Light and Water (Academic, New York, 1994), p. 89.
  8. Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. G. Ackleson, ed. Proc. SPIE2963, 160–166 (1997).
    [CrossRef]
  9. T. J. Petzold, “Volume scattering functions for selected waters,” U.S. Department of Commerce Final Tech. Rep. (National Technical Information Sercie, Springfield, Va. 22151, 1992).

1997

1996

1994

1984

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
[CrossRef]

1977

A. Y. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

1975

Arnone, R. A.

Brown, O. B.

Carder, K. L.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. G. Ackleson, ed. Proc. SPIE2963, 160–166 (1997).
[CrossRef]

Davis, C. O.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. G. Ackleson, ed. Proc. SPIE2963, 160–166 (1997).
[CrossRef]

Gentili, B.

Gordon, H. R.

Jacobs, M.

Kirk, J. T. O.

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
[CrossRef]

Lee, Z. P.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. G. Ackleson, ed. Proc. SPIE2963, 160–166 (1997).
[CrossRef]

Mobley, C. D.

C. D. Mobley, Light and Water (Academic, New York, 1994), p. 89.

Morel, A.

Morel, A. Y.

A. Y. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Mueller, J. L.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. G. Ackleson, ed. Proc. SPIE2963, 160–166 (1997).
[CrossRef]

Peacock, T. G.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. G. Ackleson, ed. Proc. SPIE2963, 160–166 (1997).
[CrossRef]

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected waters,” U.S. Department of Commerce Final Tech. Rep. (National Technical Information Sercie, Springfield, Va. 22151, 1992).

Prieur, L.

A. Y. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Steward, R. G.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. G. Ackleson, ed. Proc. SPIE2963, 160–166 (1997).
[CrossRef]

Sydor, M.

Tassan, S.

Appl. Opt.

Limnol. Oceanogr.

A. Y. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
[CrossRef]

Other

C. D. Mobley, Light and Water (Academic, New York, 1994), p. 89.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. G. Ackleson, ed. Proc. SPIE2963, 160–166 (1997).
[CrossRef]

T. J. Petzold, “Volume scattering functions for selected waters,” U.S. Department of Commerce Final Tech. Rep. (National Technical Information Sercie, Springfield, Va. 22151, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Comparison of a total from filter pads and filtrate, with a from AC9 at 412 nm. a p and a DOM decrease exponentially to values less than 0.1 at 720 nm.

Fig. 2
Fig. 2

Average spectral distribution of S rs(λ) for 2 July 1996 normalized to 1 at 730 nm. The solid curve shows S rs = 0.3(440/λ)4.1 + 2.3(400/λ)1.5, the sum of terms that are due to Rayleigh and aerosol scattering, respectively.

Fig. 3
Fig. 3

Effect on R rsT(λ) that is due to surface roughness. The corrected reflectance R rs(λ) is shown by the dotted curves. Station 15, curve R rs15, had b 550 = 14 (m-1). Station 2, curve R rs2, is typical of the relatively clear coastal zone off Camp Lejeune, North Carolina.

Fig. 4
Fig. 4

Comparison of the calculated and measured a(λ). Curve 1 shows a(λ) for Station 1 in the Gulf of Mexico. The triangles show the corresponding AC9 values of a(λ). Similarly, Curve 2 shows a(λ) for a high DOM station in the Jourdan River. Noise effects seen in Curve 2 limit the accuracy of this technique for waters with a 412 > 10 (m-1).

Fig. 5
Fig. 5

Estimates of a(λ) for Camp Lejeune stations. Curve S2 shows a(λ) for clear ocean water. Curve S15 shows a(λ) for a station with b = 13 (m-1). The discrete experimental points show the measured values of a(λ) at AC9 meter wavelengths.

Fig. 6
Fig. 6

For stations where DOM is high and b is relatively low, R rs(λ) is near the noise level. For this Jourdan River station, a/ b = 3.5 at 412 nm. The technique is limited to a/ b < 3.

Fig. 7
Fig. 7

Comparison of calculated and measured values of a at 412 nm shows the worst-case scenario, high DOM and low b. Dashed line shows the one-to-one correspondence. The solid line shows the best linear fit with r 2 = 0.95.

Fig. 8
Fig. 8

Calculated and measured a at 440 nm show an excellent agreement. The solid line shows linear fit with r 2 = 0.97.

Fig. 9
Fig. 9

Using C = 0.051 and b b /b = 0.0185, we obtain a close correlation between the estimated and measured b for the Camp Lejeune stations.

Tables (6)

Tables Icon

Table 1 Comparison of Measured (aAC9) and Calculated (aRrs) Volume Absorption Coefficient at each Wavelength λa

Tables Icon

Table 2 Comparison of Measured (aAC9) and Calculated (aRrs) Volume Absorption Coefficient at each Wavelength λa

Tables Icon

Table 3 Comparison of Measured (aAC9) and Calculated (aRrs) Volume Absorption Coefficient at each Wavelength λa

Tables Icon

Table 4 Comparison of Measured (aAC9) and Calculated (aRrs) Volume Absorption Coefficient at Individual Stationsa

Tables Icon

Table 5 Comparison of Measured (aAC9) and Calculated (aRrs) Volume Absorption Coefficient at Individual Stationsa

Tables Icon

Table 6 Comparison of Measured (aAC9) and Calculated (aRrs) Volume Absorption Coefficient at Individual Stationsa

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

R rs = Cb b / a + b b ,
R rs = Cb b / a .
R rs λ = C b λ / a λ ,
R rsT λ - S rs λ = C b λ / a λ .
S rs 730 R rsT 2 a 2 / a 2 - a 1 - R rsT 1 a 1 / a 2 - a 1 ,
a λ Δ R rsT a 1 a 2 / a 1 - a 2 730 / λ / R rs λ ,
S rs λ = Δ + S R 400 / λ 4.1 + S a 400 / λ η ,
C b 730 Δ R rsT a 1 a 2 / a 1 - a 2 .
Δ a = 1 / 7 n   | a n AC 9 - a n Rrs | m - 1 , σ = 1 / 7 n   2 a n AC 9 - a n Rrs 2 0.5 / a n AC 9 + a n Rrs .
Δ a = 1 / 7 n   | a n AC 9 - a n Rrs | m - 1 , σ = 1 / 7 N   2 a n AC 9 - a n Rrs 2 0.5 / a n AC 9 + a n Rrs .
Δ a = 1 / 18 n   | a n AC 9 - a n Rrs | m - 1 , σ = 1 / 18 n   2 a n AC 9 - a n Rrs 2 0.5 / a n AC 9 + a n Rrs .
Δ a = 1 / 9 j   | a j AC 9 - a j Rrs | m - 1 , σ = 1 / 9 j   2 a j AC 9 - a j Rrs 2 0.5 / a j AC 9 + a j Rrs .
Δ a = 1 / 9 j   | a j AC 9 - a j Rrs | m - 1 , σ = 1 / 9 j   2 a j AC 9 - a j Rrs 2 0.5 / a j AC 9 + a j Rrs .
Δ a = 1 / 9 j   | a j AC 9 - a j Rrs | m - 1 , σ = 1 / 9 j   2 a j AC 9 - a j Rrs 2 0.5 / a j AC 9 + a j Rrs .

Metrics