Abstract

Single-shot vibrational Raman measurements were performed along an 11-mm-long line crossing the reaction zone in a premixed, fuel-rich (ϕ = 10), laminar methane–air flame by use of a frequency-tripled Nd:YAG laser with a 355-nm emission wavelength. This laser source seems to have advantages relative to KrF excimer lasers as well as to Nd:YAG lasers at 532 nm for hydrocarbon combustion diagnostics. The Raman emissions of all major species (N2, O2, CH4, H2, CO2, H2O) were detected simultaneously with a spatial resolution of 0.4 mm. By integration over selected spectral intervals, the mole fractions of all species and subsequently the local gas temperatures have been obtained. A comparison of the temperatures that were found with results from filtered Rayleigh experiments showed good agreement, indicating the success of what are to the best of our knowledge the first one-dimensional single-shot Raman measurements in a sooting hydrocarbon flame.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, 1996).
  2. J. Haumann, A. Leipertz, “Giant-pulsed laser Raman oxygen measurements in a premixed laminar methane–air flame,” Appl. Opt. 24, 4509–4515 (1985).
    [CrossRef] [PubMed]
  3. W. Meier, A. O. Vyrodov, V. Bergmann, W. Stricker, “Simultaneous Raman/LIF measurements of major species and NO in turbulent H2/air diffusion flames,” Appl. Phys. B 63, 79–90 (1996).
    [CrossRef]
  4. S. P. Nandula, T. M. Brown, R. W. Pitz, P. A. DeBarber, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
    [PubMed]
  5. J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Multispecies Raman imaging in flames by use of an unintensified charge-coupled device,” Opt. Lett. 20, 934–936 (1995).
    [CrossRef] [PubMed]
  6. A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
    [CrossRef]
  7. M. B. Long, D. C. Fourgouette, M. C. Escoda, “Instantaneous ramanography of a turbulent diffusion flame,” Opt. Lett. 8, 244–246 (1983).
    [CrossRef] [PubMed]
  8. F. Rabenstein, A. Leipertz, “Two-dimensional temperature determination in the exhaust region of a laminar flat flame burner with linear Raman scattering,” Appl. Opt. 36, 6989–6996 (1997).
    [CrossRef]
  9. R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T.-S. Cheng, “Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen–air flame,” Appl. Opt. 29, 2325–2332 (1990).
    [CrossRef] [PubMed]
  10. A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
    [CrossRef]
  11. J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1505 (1992).
    [CrossRef] [PubMed]
  12. T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
    [CrossRef]
  13. F. Lipp, E. P. Hassel, J. Janicka, “Comparison of UV Raman spectroscopy with 248 nm and 308 nm for determination of flame temperature and concentrations,” in Proceedings of the Anglo-German Combustion Symposium 1993 (British Section of the Combustion Institute, Cambridge, 1993), pp. 255–258.
  14. E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by the use of a narrow-band XeCl excimer laser,” Appl. Opt. 32, 4058–4065 (1993).
    [PubMed]
  15. J. A. Shirley, “UV Raman spectroscopy of H2–air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
    [CrossRef]
  16. M. S. Mansour, Y.-C. Chen, “Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser,” Appl. Opt. 35, 4252–4260 (1996).
    [CrossRef] [PubMed]
  17. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  18. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
    [CrossRef] [PubMed]
  19. R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
    [CrossRef]
  20. A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
    [CrossRef]
  21. S. P. Nandula, R. W. Pitz, R. S. Barlow, G. J. Fiechtner, “Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor,” paper AIAA-96-0937, presented at the 34th Aerospace Science Meeting and Exhibit, Reno, Nevada, 15–18 January 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).
  22. G. Laufer, R. H. Krauss, J. H. Grinstead, “Multiphoton ionization of N2 by the third harmonic of a Nd:YAG laser: a new avenue for air diagnostics,” Opt. Lett. 16, 1037–1039 (1991).
    [CrossRef] [PubMed]
  23. A. Leipertz, J. Haumann, M. Fiebig, “Contact-free measurements of oxygen concentration in industrial flames by Raman scattering,” Chem. Eng. Technol. 10, 190–203 (1987).
    [CrossRef]
  24. D. Hofmann, K.-U. Münch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
    [CrossRef]
  25. D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950.
    [CrossRef]

1997 (1)

1996 (3)

1995 (3)

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Multispecies Raman imaging in flames by use of an unintensified charge-coupled device,” Opt. Lett. 20, 934–936 (1995).
[CrossRef] [PubMed]

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
[CrossRef]

1994 (2)

S. P. Nandula, T. M. Brown, R. W. Pitz, P. A. DeBarber, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
[PubMed]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

1993 (1)

1992 (1)

1991 (1)

1990 (2)

1987 (3)

A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

A. Leipertz, J. Haumann, M. Fiebig, “Contact-free measurements of oxygen concentration in industrial flames by Raman scattering,” Chem. Eng. Technol. 10, 190–203 (1987).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

1985 (1)

1983 (1)

1979 (1)

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

Andresen, P.

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
[CrossRef]

Barlow, R. S.

S. P. Nandula, R. W. Pitz, R. S. Barlow, G. J. Fiechtner, “Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor,” paper AIAA-96-0937, presented at the 34th Aerospace Science Meeting and Exhibit, Reno, Nevada, 15–18 January 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).

Bergmann, V.

W. Meier, A. O. Vyrodov, V. Bergmann, W. Stricker, “Simultaneous Raman/LIF measurements of major species and NO in turbulent H2/air diffusion flames,” Appl. Phys. B 63, 79–90 (1996).
[CrossRef]

Bilger, R. W.

A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Bonczyk, P. A.

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

Bowling, J. M.

Brockhinke, A.

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
[CrossRef]

Brown, T. M.

Chen, Y.-C.

Cheng, T.-S.

DeBarber, P. A.

Dibble, R. W.

A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, 1996).

Escoda, M. C.

Fiebig, M.

A. Leipertz, J. Haumann, M. Fiebig, “Contact-free measurements of oxygen concentration in industrial flames by Raman scattering,” Chem. Eng. Technol. 10, 190–203 (1987).
[CrossRef]

Fiechtner, G. J.

S. P. Nandula, R. W. Pitz, R. S. Barlow, G. J. Fiechtner, “Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor,” paper AIAA-96-0937, presented at the 34th Aerospace Science Meeting and Exhibit, Reno, Nevada, 15–18 January 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).

Fourgouette, D. C.

Grinstead, J. H.

Hassel, E. P.

E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by the use of a narrow-band XeCl excimer laser,” Appl. Opt. 32, 4058–4065 (1993).
[PubMed]

F. Lipp, E. P. Hassel, J. Janicka, “Comparison of UV Raman spectroscopy with 248 nm and 308 nm for determination of flame temperature and concentrations,” in Proceedings of the Anglo-German Combustion Symposium 1993 (British Section of the Combustion Institute, Cambridge, 1993), pp. 255–258.

Haumann, J.

A. Leipertz, J. Haumann, M. Fiebig, “Contact-free measurements of oxygen concentration in industrial flames by Raman scattering,” Chem. Eng. Technol. 10, 190–203 (1987).
[CrossRef]

J. Haumann, A. Leipertz, “Giant-pulsed laser Raman oxygen measurements in a premixed laminar methane–air flame,” Appl. Opt. 24, 4509–4515 (1985).
[CrossRef] [PubMed]

Hofmann, D.

D. Hofmann, K.-U. Münch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
[CrossRef]

D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950.
[CrossRef]

Inaba, H.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[CrossRef]

Janicka, J.

F. Lipp, E. P. Hassel, J. Janicka, “Comparison of UV Raman spectroscopy with 248 nm and 308 nm for determination of flame temperature and concentrations,” in Proceedings of the Anglo-German Combustion Symposium 1993 (British Section of the Combustion Institute, Cambridge, 1993), pp. 255–258.

Kagawa, K.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[CrossRef]

Kobayashi, T.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[CrossRef]

Kohse-Höinghaus, K.

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
[CrossRef]

Konishi, M.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[CrossRef]

Krauss, R. H.

Laufer, G.

Leipertz, A.

Lipp, F.

F. Lipp, E. P. Hassel, J. Janicka, “Comparison of UV Raman spectroscopy with 248 nm and 308 nm for determination of flame temperature and concentrations,” in Proceedings of the Anglo-German Combustion Symposium 1993 (British Section of the Combustion Institute, Cambridge, 1993), pp. 255–258.

Long, M. B.

Mansour, M. S.

Masri, A. R.

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

Meier, W.

W. Meier, A. O. Vyrodov, V. Bergmann, W. Stricker, “Simultaneous Raman/LIF measurements of major species and NO in turbulent H2/air diffusion flames,” Appl. Phys. B 63, 79–90 (1996).
[CrossRef]

Münch, K.-U.

Nandula, S. P.

S. P. Nandula, T. M. Brown, R. W. Pitz, P. A. DeBarber, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
[PubMed]

S. P. Nandula, R. W. Pitz, R. S. Barlow, G. J. Fiechtner, “Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor,” paper AIAA-96-0937, presented at the 34th Aerospace Science Meeting and Exhibit, Reno, Nevada, 15–18 January 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).

Ohtaka, M.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[CrossRef]

Pitz, R. W.

Rabenstein, F.

Schraml, S.

Shirley, J. A.

J. A. Shirley, “UV Raman spectroscopy of H2–air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
[CrossRef]

Stricker, W.

W. Meier, A. O. Vyrodov, V. Bergmann, W. Stricker, “Simultaneous Raman/LIF measurements of major species and NO in turbulent H2/air diffusion flames,” Appl. Phys. B 63, 79–90 (1996).
[CrossRef]

Taki, S.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[CrossRef]

Tecu, K. S.

Ueda, M.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Verdieck, J. F.

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

Vyrodov, A. O.

W. Meier, A. O. Vyrodov, V. Bergmann, W. Stricker, “Simultaneous Raman/LIF measurements of major species and NO in turbulent H2/air diffusion flames,” Appl. Phys. B 63, 79–90 (1996).
[CrossRef]

Wehrmeyer, J. A.

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Will, S.

Yeralan, S.

Appl. Opt. (6)

Appl. Phys. B (4)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

J. A. Shirley, “UV Raman spectroscopy of H2–air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
[CrossRef]

A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995).
[CrossRef]

W. Meier, A. O. Vyrodov, V. Bergmann, W. Stricker, “Simultaneous Raman/LIF measurements of major species and NO in turbulent H2/air diffusion flames,” Appl. Phys. B 63, 79–90 (1996).
[CrossRef]

Chem. Eng. Technol. (1)

A. Leipertz, J. Haumann, M. Fiebig, “Contact-free measurements of oxygen concentration in industrial flames by Raman scattering,” Chem. Eng. Technol. 10, 190–203 (1987).
[CrossRef]

Combust. Flame (2)

A. R. Masri, R. W. Bilger, R. W. Dibble, “Fluorescence interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Opt. Lett. (6)

Prog. Energy Combust. Sci. (1)

A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

Other (5)

S. P. Nandula, R. W. Pitz, R. S. Barlow, G. J. Fiechtner, “Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor,” paper AIAA-96-0937, presented at the 34th Aerospace Science Meeting and Exhibit, Reno, Nevada, 15–18 January 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[CrossRef]

F. Lipp, E. P. Hassel, J. Janicka, “Comparison of UV Raman spectroscopy with 248 nm and 308 nm for determination of flame temperature and concentrations,” in Proceedings of the Anglo-German Combustion Symposium 1993 (British Section of the Combustion Institute, Cambridge, 1993), pp. 255–258.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, 1996).

D. Hofmann, A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 945–950.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

Calculated relative bandwidth factor of the oxygen molecule as a function of temperature for spectral integration intervals of (a) the entire Q branch, (b) 5.1-nm width, centered at 376.0 nm, (c) 2.6-nm width, centered at 376.0 nm.

Fig. 3
Fig. 3

Locations of the measured radial profiles. The image also shows the two-dimensional elastic scattering intensity distribution obtained by Rayleigh scattering24 (see text).

Fig. 4
Fig. 4

Mean values and standard deviations from 50 single-shot one-dimensional linear Raman scattering measurements as a function of the radial and axial positions in a sooting CH4–air flame. (a) Major species’ mole fractions: CO2 (+), O2 (○), N2 (□), CH4 (△), H2O (◇), and H2 (×) for five different downstream positions X/ D. (b) Radial temperature profiles for the same five downstream positions X/ D (●, line Raman, this work; ○, filtered Rayleigh24,25).

Fig. 5
Fig. 5

Single-shot (solid curves) and time-averaged (dotted curves) pdf’s of the measured data at different locations: (a) N2 mole fraction pdf at 607 K, (b) N2 mole fraction pdf at 1735 K, (c) H2O mole fraction pdf at 1735 K, (d) temperature pdf at 1735 K.

Tables (1)

Tables Icon

Table 1 Spectral Integration Intervals and Variation of Bandwidth-Factor f with Temperature for 355-nm Excitation and 1.5-nm Spectral Resolution

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n i = N i ε k 0 k i σ i f i T 0 , i ,

Metrics