Abstract

We measured the basic optical properties of Pyrromethene-567 (P567) and Pyrromethene-556 (P556) dye solutions that are relevant to their application as dye lasers. The fluorescence spectra of methanol solutions show mirror images in relation to the absorption spectra, with Stokes shifts of 29.5 and 37.5 nm, respectively, for the two dyes. The central fluorescence peaks were at 546 and 535 nm, with widths of ∼40 and ∼50 nm (FWHM). The quantum yields were 97% ± 5% and 78% ± 5% for P567 and P556, respectively. Fluorescence lifetimes of 6.0 ± 0.2 ns were obtained for both dyes in methanol. Laser action, obtained by pumping with the green emission line (510.6 nm) from a copper-vapor laser, was measured in a Hänsch-type cavity. Tunability ranged from 531 to 590 nm for P567 and from 522 to 590 nm for P556. Lasing thresholds were ∼0.27 and ∼0.16 mJ/pulse, with 25% and 27% slope efficiencies for P567 and P556, respectively. Spectroscopy and lasing were studied in other solvents as well.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Shan, K. Thanagaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
    [CrossRef]
  2. M. P. O’Neil, “Synchronously pumped visible laser dye with twice the efficiency of Rhodamine-6G,” Opt. Lett. 18, 37–38 (1993).
    [CrossRef]
  3. S. C. Guggenheimer, J. H. Boyer, K. Thanagaraj, M. Soong, M. Shan, T. G. Pavlopoulos, “Efficient laser action from two cw laser-pumped Pyrromethene–BF2 complexes,” Appl. Opt. 32, 3942–3943 (1993).
    [PubMed]
  4. T. G. Pavlopoulos, M. Shan, J. H. Boyer, “Efficient laser action from 1, 3, 5, 7, 8 pentamethyl Pyrromethene–BF2 complex and its disodium 2, 6-disulfonate derivative,” Opt. Commun. 70, 425–427 (1989).
    [CrossRef]
  5. T. G. Pavlopoulos, J. H. Boyer, M. Shan, K. Thanagaraj, M. Soong, “Laser action from 2, 6, 8-position trisubstituted 1, 3, 5-tetramethylpyrromethene–BF2 complexes,” Appl. Opt. 29, 3885–3886 (1990).
    [CrossRef] [PubMed]
  6. M. D. Rahn, T. A. King, A. A. Gorman, I. Hamblett, “Photostability enhancement of Pyrromethene-567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
    [CrossRef] [PubMed]
  7. M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput, J. P. Boilot, “Toward millions of laser pulses with Pyrromethene- and Perylene-doped xerogels,” Appl. Opt. 36, 6760–6763 (1997).
    [CrossRef]
  8. M. J. Cazeca, X. Jiang, J. Kumar, S. K. Tripathy, “Epoxy matrix for solid-state dye laser applications,” Appl. Opt. 36, 4965–4968 (1997).
    [CrossRef] [PubMed]
  9. M. Broyer, J. Chevaleyre, G. Delacretaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B 35, 31–36 (1984).
    [CrossRef]
  10. W. P. Partridge, N. M. Laurendeau, C. C. Johnson, R. N. Steppel, “Performance of Pyrromethene 580 and 597 in a commercial Nd:YAG-pumped dye-laser system,” Opt. Lett. 19, 1630–1632 (1994).
    [CrossRef] [PubMed]
  11. J. J. Kim, “Metal vapour lasers: a review of recent progress,” Opt. Quantum Electron. 23, S469–S476 (1991).
    [CrossRef]
  12. P. C. Beamont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond flash Rhodamine-6G, Rhodamine-B and Rhodamine-101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
    [CrossRef]
  13. S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
    [CrossRef]
  14. V. E. Lippert, “Spektroskopische bestimmung des dipolomoments aromatischer verbindungen im ersten angeregten Singluettzustand,” Z. Electrochem. 61, 962–975 (1957).
  15. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983), Chap. 7.
    [CrossRef]
  16. J. A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1985), Chap. 3.
  17. S. J. Strickler, R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814–822 (1962).
    [CrossRef]
  18. S. Speiser, N. Shakkour, “Photoquenching parameters for commonly used laser dyes,” Appl. Phys. B 38, 191–197 (1985).
    [CrossRef]
  19. M. D. Rahn, T. A. King, “Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly(methyl methacrylate) host media,” Appl. Opt. 34, 8260–8271 (1995).
    [CrossRef] [PubMed]

1997

1995

1994

1993

1991

J. J. Kim, “Metal vapour lasers: a review of recent progress,” Opt. Quantum Electron. 23, S469–S476 (1991).
[CrossRef]

S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
[CrossRef]

1990

M. Shan, K. Thanagaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

T. G. Pavlopoulos, J. H. Boyer, M. Shan, K. Thanagaraj, M. Soong, “Laser action from 2, 6, 8-position trisubstituted 1, 3, 5-tetramethylpyrromethene–BF2 complexes,” Appl. Opt. 29, 3885–3886 (1990).
[CrossRef] [PubMed]

1989

T. G. Pavlopoulos, M. Shan, J. H. Boyer, “Efficient laser action from 1, 3, 5, 7, 8 pentamethyl Pyrromethene–BF2 complex and its disodium 2, 6-disulfonate derivative,” Opt. Commun. 70, 425–427 (1989).
[CrossRef]

1985

S. Speiser, N. Shakkour, “Photoquenching parameters for commonly used laser dyes,” Appl. Phys. B 38, 191–197 (1985).
[CrossRef]

1984

M. Broyer, J. Chevaleyre, G. Delacretaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B 35, 31–36 (1984).
[CrossRef]

1962

S. J. Strickler, R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814–822 (1962).
[CrossRef]

1957

V. E. Lippert, “Spektroskopische bestimmung des dipolomoments aromatischer verbindungen im ersten angeregten Singluettzustand,” Z. Electrochem. 61, 962–975 (1957).

Beamont, P. C.

P. C. Beamont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond flash Rhodamine-6G, Rhodamine-B and Rhodamine-101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

Berg, R. A.

S. J. Strickler, R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814–822 (1962).
[CrossRef]

Blau, P.

S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
[CrossRef]

Boilot, J. P.

Boyer, J. H.

S. C. Guggenheimer, J. H. Boyer, K. Thanagaraj, M. Soong, M. Shan, T. G. Pavlopoulos, “Efficient laser action from two cw laser-pumped Pyrromethene–BF2 complexes,” Appl. Opt. 32, 3942–3943 (1993).
[PubMed]

T. G. Pavlopoulos, J. H. Boyer, M. Shan, K. Thanagaraj, M. Soong, “Laser action from 2, 6, 8-position trisubstituted 1, 3, 5-tetramethylpyrromethene–BF2 complexes,” Appl. Opt. 29, 3885–3886 (1990).
[CrossRef] [PubMed]

M. Shan, K. Thanagaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

T. G. Pavlopoulos, M. Shan, J. H. Boyer, “Efficient laser action from 1, 3, 5, 7, 8 pentamethyl Pyrromethene–BF2 complex and its disodium 2, 6-disulfonate derivative,” Opt. Commun. 70, 425–427 (1989).
[CrossRef]

Broyer, M.

M. Broyer, J. Chevaleyre, G. Delacretaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B 35, 31–36 (1984).
[CrossRef]

Brun, A.

Canva, M.

Cazeca, M. J.

Chaput, F.

Chevaleyre, J.

M. Broyer, J. Chevaleyre, G. Delacretaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B 35, 31–36 (1984).
[CrossRef]

Dean, J. A.

J. A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1985), Chap. 3.

Delacretaz, G.

M. Broyer, J. Chevaleyre, G. Delacretaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B 35, 31–36 (1984).
[CrossRef]

Druckman, I.

S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
[CrossRef]

Faloss, M.

Gabay, S.

S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
[CrossRef]

Georges, P.

Gorman, A. A.

Guggenheimer, S. C.

Hamblett, I.

Hen, I.

S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
[CrossRef]

Horvitz, Z.

S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
[CrossRef]

Jiang, X.

Johnson, C. C.

Johnson, D. G.

P. C. Beamont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond flash Rhodamine-6G, Rhodamine-B and Rhodamine-101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

Kim, J. J.

J. J. Kim, “Metal vapour lasers: a review of recent progress,” Opt. Quantum Electron. 23, S469–S476 (1991).
[CrossRef]

King, T. A.

Kumar, J.

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983), Chap. 7.
[CrossRef]

Lando, M.

S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
[CrossRef]

Laurendeau, N. M.

Lippert, V. E.

V. E. Lippert, “Spektroskopische bestimmung des dipolomoments aromatischer verbindungen im ersten angeregten Singluettzustand,” Z. Electrochem. 61, 962–975 (1957).

Miron, E.

S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
[CrossRef]

O’Neil, M. P.

Parsons, B. J.

P. C. Beamont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond flash Rhodamine-6G, Rhodamine-B and Rhodamine-101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

Partridge, W. P.

Pavlopoulos, T. G.

S. C. Guggenheimer, J. H. Boyer, K. Thanagaraj, M. Soong, M. Shan, T. G. Pavlopoulos, “Efficient laser action from two cw laser-pumped Pyrromethene–BF2 complexes,” Appl. Opt. 32, 3942–3943 (1993).
[PubMed]

T. G. Pavlopoulos, J. H. Boyer, M. Shan, K. Thanagaraj, M. Soong, “Laser action from 2, 6, 8-position trisubstituted 1, 3, 5-tetramethylpyrromethene–BF2 complexes,” Appl. Opt. 29, 3885–3886 (1990).
[CrossRef] [PubMed]

M. Shan, K. Thanagaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

T. G. Pavlopoulos, M. Shan, J. H. Boyer, “Efficient laser action from 1, 3, 5, 7, 8 pentamethyl Pyrromethene–BF2 complex and its disodium 2, 6-disulfonate derivative,” Opt. Commun. 70, 425–427 (1989).
[CrossRef]

Politzer, I. R.

M. Shan, K. Thanagaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

Rahn, M. D.

Shakkour, N.

S. Speiser, N. Shakkour, “Photoquenching parameters for commonly used laser dyes,” Appl. Phys. B 38, 191–197 (1985).
[CrossRef]

Shan, M.

S. C. Guggenheimer, J. H. Boyer, K. Thanagaraj, M. Soong, M. Shan, T. G. Pavlopoulos, “Efficient laser action from two cw laser-pumped Pyrromethene–BF2 complexes,” Appl. Opt. 32, 3942–3943 (1993).
[PubMed]

T. G. Pavlopoulos, J. H. Boyer, M. Shan, K. Thanagaraj, M. Soong, “Laser action from 2, 6, 8-position trisubstituted 1, 3, 5-tetramethylpyrromethene–BF2 complexes,” Appl. Opt. 29, 3885–3886 (1990).
[CrossRef] [PubMed]

M. Shan, K. Thanagaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

T. G. Pavlopoulos, M. Shan, J. H. Boyer, “Efficient laser action from 1, 3, 5, 7, 8 pentamethyl Pyrromethene–BF2 complex and its disodium 2, 6-disulfonate derivative,” Opt. Commun. 70, 425–427 (1989).
[CrossRef]

Smilanski, I.

S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
[CrossRef]

Soong, M.

Speiser, S.

S. Speiser, N. Shakkour, “Photoquenching parameters for commonly used laser dyes,” Appl. Phys. B 38, 191–197 (1985).
[CrossRef]

Steppel, R. N.

Strickler, S. J.

S. J. Strickler, R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814–822 (1962).
[CrossRef]

Thanagaraj, K.

Tripathy, S. K.

Wolford, L. T.

M. Shan, K. Thanagaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

Wöste, L.

M. Broyer, J. Chevaleyre, G. Delacretaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B 35, 31–36 (1984).
[CrossRef]

Yfrah, Y.

S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. Speiser, N. Shakkour, “Photoquenching parameters for commonly used laser dyes,” Appl. Phys. B 38, 191–197 (1985).
[CrossRef]

M. Broyer, J. Chevaleyre, G. Delacretaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B 35, 31–36 (1984).
[CrossRef]

Heteroatom. Chem.

M. Shan, K. Thanagaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990).
[CrossRef]

J. Chem. Phys.

S. J. Strickler, R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814–822 (1962).
[CrossRef]

J. Chem. Soc. Faraday Trans.

P. C. Beamont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond flash Rhodamine-6G, Rhodamine-B and Rhodamine-101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993).
[CrossRef]

Opt. Commun.

T. G. Pavlopoulos, M. Shan, J. H. Boyer, “Efficient laser action from 1, 3, 5, 7, 8 pentamethyl Pyrromethene–BF2 complex and its disodium 2, 6-disulfonate derivative,” Opt. Commun. 70, 425–427 (1989).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

J. J. Kim, “Metal vapour lasers: a review of recent progress,” Opt. Quantum Electron. 23, S469–S476 (1991).
[CrossRef]

S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991).
[CrossRef]

Z. Electrochem.

V. E. Lippert, “Spektroskopische bestimmung des dipolomoments aromatischer verbindungen im ersten angeregten Singluettzustand,” Z. Electrochem. 61, 962–975 (1957).

Other

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983), Chap. 7.
[CrossRef]

J. A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1985), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic layout of the dye-laser system.

Fig. 2
Fig. 2

Absorption and fluorescence emission spectra of P567 in methanol. Inset, molecular structure of the dye.

Fig. 3
Fig. 3

Absorption and fluorescence emission spectra of P556 in methanol. Inset, molecular structure of the dye. Hatched region, prospective lasing tunability range.

Fig. 4
Fig. 4

Stokes shift versus generalized solvent polarizability for P567.

Fig. 5
Fig. 5

(b) Typical temporal evolution of a fluorescence pulse of 10-5 M P567 in methanol excited by (a) a short nitrogen-laser pulse. (c) Best-fit theoretical calculation of the fluorescence evolution for τ f = 6.0 ns.

Fig. 6
Fig. 6

Tuning spectra of P556 and P567 methanol solution dye lasers pumped at 5 mJ/pulse.

Fig. 7
Fig. 7

Comparison of the tuning spectra of P556 and Rh-6G dye lasers; both dyes are dissolved in methanol. Pump light energy, 5 mJ/pulse.

Fig. 8
Fig. 8

P567 dye-laser output pulse energy versus pump light pulse energy at dye concentration shown.

Fig. 9
Fig. 9

P556 dye-laser output pulse energy versus pump light pulse energy at dye concentration shown.

Tables (1)

Tables Icon

Table 1 Main Spectral Characteristics of P556 and P567 Solutions in Various Solventsa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ ν ˜ S Δ ν ˜ S 0 + 2 Δ μ 2 hca 3   Δ f ,
Δ f f ε r - f n = ε r - 1 2 ε r + 1 - n 2 - 1 2 n 2 + 1
Δ μ 2 = 10 3 × ln   10   c 4 π 2 N a     ε λ λ d λ ,
Δ ν ˜ S Δ ν ˜ S 0 + 1 a 3   χ ,
τ rad - 1 = 2.88 × 10 - 9 n 2 ν ˜ - 3 - 1     ε ν ˜ ν ˜ d ν ˜ ,
ν ˜ - 3 - 1 =   F ν ˜ d ν ˜   F ν ˜ ν ˜ - 3 d ν ˜ ,
Γ λ = σ e λ Δ N = g λ λ 4 Δ N 8 π cn 2 τ rad ,
α loss λ g λ ϕ f F th α ab λ 4 8 π cn 2 .
σ ln = α ESA Δ N = α ESA F th α ab τ f .
σ e λ = g λ λ 4 8 π cn 2 τ rad

Metrics