Abstract

Sum-frequency mixing of two cw single-mode Nd:YAG lasers in a doubly resonant congruent lithium niobate resonator generated two TEM00 beams of single-frequency 589-nm radiation. The primary beam had a power of 400 mW and the secondary beam of approximately 15 mW by use of 320 mW of 1319-nm and 660 mW of 1064-nm Nd:YAG radiation incident on the lithium niobate resonator. This corresponds to an optical power conversion efficiency of more than 40%.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Kretschmann, F. Heine, G. Huber, T. Halldórsson, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer,” Opt. Lett. 22, 1461–1463 (1997).
    [Crossref]
  2. H. Moosmüller, J. D. Vance, “Sum-frequency generation of continuous-wave sodium D2 resonance radiation,” Opt. Lett. 22, 1135–1137 (1997).
    [Crossref] [PubMed]
  3. C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
    [Crossref]
  4. C. Y. She, J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
    [Crossref]
  5. W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
    [Crossref]
  6. T. Baer, “Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. B 3, 1175–1180 (1986).
    [Crossref]
  7. A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
    [Crossref]
  8. Y. Kaneda, S. Kubota, “Continuous-wave 355-nm laser source based on doubly resonant sum-frequency mixing in an external resonator,” Opt. Lett. 20, 2204–2206 (1995).
    [Crossref] [PubMed]
  9. P. G. Wigley, Q. Zhang, E. Miesak, G. J. Dixon, “High-power 467-nm passively locked signal-resonant sum-frequency laser,” Opt. Lett. 20, 2496–2498 (1995).
    [Crossref] [PubMed]
  10. D. J. Berkeland, F. C. Cruz, J. C. Berquist, “Sum-frequency generation of continuous-wave light at 194 nm,” Appl. Opt. 36, 4159–4162 (1997).
    [Crossref] [PubMed]
  11. W. P. Risk, W. J. Kozlovsky, “Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator,” Opt. Lett. 17, 707–709 (1992).
    [Crossref] [PubMed]
  12. T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd-YAG laser,” Opt. Lett. 10, 65–67 (1985).
    [Crossref] [PubMed]
  13. Lightwave Electronics, Specifications of the Series 126 Diode-Pumped Non-Planar Ring Laser (Lightwave Electronics, 1161 San Antonio Road, Mountain View, Calif. 94043, 1994).
  14. G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [Crossref]
  15. D. C. Gerstenberger, G. E. Tye, R. W. Wallace, “Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler,” Opt. Lett. 16, 992–994 (1991).
    [Crossref] [PubMed]
  16. P. Dubé, L.-S. Ma, J. Ye, P. Jungner, J. L. Hall, “Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas,” J. Opt. Soc. Am. B 13, 2041–2054 (1996).
    [Crossref]
  17. P. L. Hansen, P. Buchhave, “Thermal self-frequency locking of a doubly resonant optical parametric oscillator,” Opt. Lett. 22, 1074–1076 (1997).
    [Crossref] [PubMed]
  18. K. An, B. A. Sones, C. Fang-Yen, R. R. Dasari, M. S. Feld, “Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level,” Opt. Lett. 22, 1433–1435 (1997).
    [Crossref]
  19. T. H. Jeys, A. A. Brailove, A. Mooradian, “Sum frequency generation of sodium resonance radiation,” Appl. Opt. 28, 2588–2591 (1989).
    [Crossref] [PubMed]
  20. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [Crossref]
  21. K. Sugiyama, J. Yoda, T. Sakurai, “Generation of continuous-wave ultraviolet light by sum-frequency mixing of diode-laser and argon-ion-laser radiation in β-BaB2O4,” Opt. Lett. 16, 449–451 (1991).
    [Crossref] [PubMed]
  22. M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
    [Crossref]
  23. P. F. Bordui, Crystal Technology Inc., Palo Alto, Calif. 94303 (personal communication, 1994).
  24. Y. C. See, S. Guha, J. Falk, “Limits to the NEP of an intracavity LiNbO3 upconverter,” Appl. Opt. 19, 1415–1418 (1980).
    [Crossref] [PubMed]

1998 (1)

1997 (5)

1996 (1)

1995 (2)

1994 (1)

C. Y. She, J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[Crossref]

1992 (1)

1991 (2)

1990 (1)

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[Crossref]

1989 (1)

1986 (1)

1985 (1)

1984 (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[Crossref]

1980 (1)

1976 (1)

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

1968 (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[Crossref]

Alexander, J. I.

Alvarez, R. J.

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[Crossref]

An, K.

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[Crossref]

Baer, T.

Berkeland, D. J.

Berquist, J. C.

Bills, R. E.

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[Crossref]

Bordui, P. F.

P. F. Bordui, Crystal Technology Inc., Palo Alto, Calif. 94303 (personal communication, 1994).

Bosenberg, W. R.

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[Crossref]

Brailove, A. A.

Buchhave, P.

Byer, R. L.

T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd-YAG laser,” Opt. Lett. 10, 65–67 (1985).
[Crossref] [PubMed]

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Choy, M. M.

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Cruz, F. C.

Dasari, R. R.

Dixon, G. J.

Dubé, P.

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[Crossref]

Edwards, G. J.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[Crossref]

Falk, J.

Fang-Yen, C.

Feld, M. S.

Gardner, C. S.

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[Crossref]

Gerstenberger, D. C.

Guha, S.

Hall, J. L.

Halldórsson, T.

Hansen, P. L.

Heine, F.

Huber, G.

Jeys, T. H.

Jungner, P.

Kane, T. J.

Kaneda, Y.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Kozlovsky, W. J.

Kretschmann, H. M.

Kubota, S.

Latifi, H.

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[Crossref]

Lawrence, M.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[Crossref]

Ma, L.-S.

Miesak, E.

Mooradian, A.

Moosmüller, H.

Myers, L. E.

Risk, W. P.

Sakurai, T.

See, Y. C.

She, C. Y.

C. Y. She, J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[Crossref]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[Crossref]

Sones, B. A.

Sugiyama, K.

Tye, G. E.

Vance, J. D.

Wallace, R. W.

Wigley, P. G.

Ye, J.

Yoda, J.

Yu, J. R.

C. Y. She, J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[Crossref]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[Crossref]

Zhang, Q.

Appl. Opt. (3)

Geophys. Res. Lett. (2)

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[Crossref]

C. Y. She, J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Lett. (11)

Y. Kaneda, S. Kubota, “Continuous-wave 355-nm laser source based on doubly resonant sum-frequency mixing in an external resonator,” Opt. Lett. 20, 2204–2206 (1995).
[Crossref] [PubMed]

P. G. Wigley, Q. Zhang, E. Miesak, G. J. Dixon, “High-power 467-nm passively locked signal-resonant sum-frequency laser,” Opt. Lett. 20, 2496–2498 (1995).
[Crossref] [PubMed]

P. L. Hansen, P. Buchhave, “Thermal self-frequency locking of a doubly resonant optical parametric oscillator,” Opt. Lett. 22, 1074–1076 (1997).
[Crossref] [PubMed]

H. Moosmüller, J. D. Vance, “Sum-frequency generation of continuous-wave sodium D2 resonance radiation,” Opt. Lett. 22, 1135–1137 (1997).
[Crossref] [PubMed]

K. An, B. A. Sones, C. Fang-Yen, R. R. Dasari, M. S. Feld, “Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level,” Opt. Lett. 22, 1433–1435 (1997).
[Crossref]

H. M. Kretschmann, F. Heine, G. Huber, T. Halldórsson, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer,” Opt. Lett. 22, 1461–1463 (1997).
[Crossref]

W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
[Crossref]

T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd-YAG laser,” Opt. Lett. 10, 65–67 (1985).
[Crossref] [PubMed]

K. Sugiyama, J. Yoda, T. Sakurai, “Generation of continuous-wave ultraviolet light by sum-frequency mixing of diode-laser and argon-ion-laser radiation in β-BaB2O4,” Opt. Lett. 16, 449–451 (1991).
[Crossref] [PubMed]

D. C. Gerstenberger, G. E. Tye, R. W. Wallace, “Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler,” Opt. Lett. 16, 992–994 (1991).
[Crossref] [PubMed]

W. P. Risk, W. J. Kozlovsky, “Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator,” Opt. Lett. 17, 707–709 (1992).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[Crossref]

Phys. Rev. B (1)

M. M. Choy, R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Other (2)

P. F. Bordui, Crystal Technology Inc., Palo Alto, Calif. 94303 (personal communication, 1994).

Lightwave Electronics, Specifications of the Series 126 Diode-Pumped Non-Planar Ring Laser (Lightwave Electronics, 1161 San Antonio Road, Mountain View, Calif. 94043, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Monolithic lithium niobate resonator for sum-frequency generation of 589-nm radiation.

Fig. 3
Fig. 3

Fractional power at 1064 nm reflected by the LiNbO3 resonator while tuning the laser toward lower frequency. The resonator mode is clearly asymmetric with the near-linear low-angle ramp being the self-locking region.

Fig. 4
Fig. 4

Boyd and Kleinman (BK) focusing factor h as a function of the focusing parameter ξ for our resonator geometry (solid curve), our resonator (filled square), and the maximum for an isosceles triangular beam path with phase matching in one of the two equal-length legs (dashed curve).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P 3 = γ SF L pm P 1 P 2 ,
γ SF = 4 ω 1 ω 2 ω 3 h π ε 0 c 4 n 3 2   d eff 2 ,
h ξ = 1 4 ξ - ξ 1 - μ ξ 1 + μ d τ   exp i σ m τ 1 + i τ ,
μ α = 1 - L rt L pm = - 1 + 2   sin   α ,
R z = z 1 + z R z 2 ,
P 3 = γ P 1 P 2 = 0.0035 ± 0.0009 W - 1 P 1 P 2 .
P i = 1 - r i 1 - r i t i 2   P mi ,
t i = 1 - a 0 L rt 1 - γ R i P j ,

Metrics