Abstract

A 1-m-long RF-pumped HCN waveguide laser is described. Output power optimizations were performed with mixtures of methane, nitrogen, and helium in the ratios 1:2:0, 1:1:0, 2:1:0, and 8:3:36. The variation of output power as a function of gas pressure, flow rate, waveguide wall temperature, and RF driving power was studied. A maximum output power of approximately 50 mW was obtained from the 337-μm line in the EH11 cavity mode with the 1:1:0 mixture. Gain and saturation irradiance measurements were also performed on the same laser with an adjustable Michelson output coupler. The output power was measured as a function of the adjustment of the coupler, and a least-squares fit of a suitable laser model to the measured data was employed to furnish values for the small signal gain and saturation irradiance of the gain medium. Gain and saturation irradiance values were measured in this way for the above gas mixtures as a function of gas pressure, flow rate, and wall temperature, and the results were used to calculate the corresponding output powers. Reasonable agreement was found between these calculated powers and experimentally measured output powers. A quadratic variation of saturation irradiance with pressure is predicted by a simple theory and is also observed in the measured data.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Gebbie, N. W. B. Stone, F. D. Findlay, “A stimulated emission source at 0.34 millimetre wavelength,” Nature (London) 202, 685 (1964).
    [CrossRef]
  2. L. O. Hocker, A. Javan, D. Ramachandra Ra, L. Frenkel, T. Sullivan, “Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared,” Appl. Phys. Lett. 10, 147–149 (1967).
    [CrossRef]
  3. D. R. Lide, A. G. Maki, “On the explanation of the so-called CN laser,” Appl. Phys. Lett. 11, 62–64 (1967).
    [CrossRef]
  4. A. N. Topkov, V. A. Svich, N. G. Pokormyakho, “Stabilized HCN laser with HF pumping,” Instrum. Exp. Tech. 23(6), 1479–1481 (1980).
  5. L. B. Whitbourn, “A 337 μm density interferometer for the lt-4 tokamak,” Int. J. Infrared Millimetre Waves 5(5), 625–635 (1984).
    [CrossRef]
  6. M. K. M. Kawamura, I. Okabayashi, T. Fukuyama, “A capacitively coupled RF-excited CW-HCN laser,” IEEE J. Quantum Electron. QE-21(11), 1833–1837 (1985).
    [CrossRef]
  7. V. V. Kubarev, “Optimised HCN laser,” Instrum. Exp. Tech. 29(3), 697–699 (1986).
  8. S. Okajima, K. Kawahata, T. Aoki, D. G. Bi, S. Kubo, J. Fujita, “Suppression of laser noise in CW 337 μm HCN lasers,” Infrared Phy. 29(2–4), 331–337 (1989).
    [CrossRef]
  9. Yu. E. Kamenev, E. M. Kuleshov, “Waveguide HCN laser with controlled coupling,” Sov. J. Quantum Electron. 20(1), 48–49 (1990).
    [CrossRef]
  10. P. Belland, D. Veron, L. B. Whitbourn, “Scaling laws for CW 337-μm HCN waveguide lasers,” Appl. Opt. 15, 3047–3053 (1976).
    [CrossRef] [PubMed]
  11. P. Belland, J. P. Crenn, “Power scaling laws for CW HCN conventional Fabry–Perot lasers and comparison with CW HCN waveguide lasers,” Appl. Opt. 18, 1513–1517 (1979).
    [CrossRef] [PubMed]
  12. O. M. Stafsudd, Y. C. Yeh, “The CW gain characteristics of several gas mixtures at 337 μ,” IEEE J. Quantum Electron. QE-5, 377–380 (1969).
    [CrossRef]
  13. J. R. Birch, C. C. Bradley, “A variable loss determination of HCN laser gain,” Infrared Phys. 13(12), 99–108 (1973).
    [CrossRef]
  14. J. L. Bruneau, P. Belland, T. Lebertre, D. Veron, “CW HCN laser gain in a hollow dielectric rectangular cross-section discharge tube,” Appl. Phys. 19(3), 359–361 (1979).
    [CrossRef]
  15. S. J. Cooper, N. R. Heckenberg, “Plane-wave theory of a Michelson laser coupler with a dielectric slab beam splitter,” Appl. Opt. 35, 1395–1398 (1996).
    [CrossRef] [PubMed]
  16. P. Belland, D. Veron, “A compact CW HCN laser with high stability and power output,” Opt. Commun. 9(2), 146–148 (1973).
    [CrossRef]
  17. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).
  18. S. Cooper, “A study of the indirect measurement of laser small signal gain and saturation irradiance and its application to an RF pumped HCN waveguide laser,” Ph.D. dissertation (University of Queensland, St. Lucia, Brisbane, Australia, 1994).
  19. L. B. Whitbourn, J. C. Macfarlane, P. A. Stimson, B. W. James, I. S. Falconer, “An experimental study of a CW optically pumped far infrared formic acid vapour laser,” Infrared Phys. 28(1), 7–20 (1988).
    [CrossRef]
  20. F. B. Foote, D. T. Hodges, H. B. Dyson, “Calibration of power and energy meters for the far infrared/near millimeter wave spectral region,” Int. J. Infrared Millimeter Waves 2(4), 773–782 (1981).
    [CrossRef]
  21. J. Vanderkooy, C. S. Kang, “Design and characteristics of a 2m continuous wave HCN laser,” Infrared Phy. 16, 627–637 (1976).
    [CrossRef]
  22. M. Makiuchi, M. Kawamura, “A compact CW HCN gas laser with RF-excited discharge,” IEEE J. Quantum Electron. QE-19(6), 1115–1120 (1983).
    [CrossRef]
  23. L. W. Casperson, “Laser power calculations: sources of error,” Appl. Opt. 19, 422–434 (1980).
    [CrossRef] [PubMed]
  24. E. A. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  25. M. Makiuchi, M. Kawamura, “Effect of oxygen on compact CW-HCN laser,” Jpn. J. Appl. Phy. 21(5), 716–718 (1982).
    [CrossRef]

1996

1990

Yu. E. Kamenev, E. M. Kuleshov, “Waveguide HCN laser with controlled coupling,” Sov. J. Quantum Electron. 20(1), 48–49 (1990).
[CrossRef]

1989

S. Okajima, K. Kawahata, T. Aoki, D. G. Bi, S. Kubo, J. Fujita, “Suppression of laser noise in CW 337 μm HCN lasers,” Infrared Phy. 29(2–4), 331–337 (1989).
[CrossRef]

1988

L. B. Whitbourn, J. C. Macfarlane, P. A. Stimson, B. W. James, I. S. Falconer, “An experimental study of a CW optically pumped far infrared formic acid vapour laser,” Infrared Phys. 28(1), 7–20 (1988).
[CrossRef]

1986

V. V. Kubarev, “Optimised HCN laser,” Instrum. Exp. Tech. 29(3), 697–699 (1986).

1985

M. K. M. Kawamura, I. Okabayashi, T. Fukuyama, “A capacitively coupled RF-excited CW-HCN laser,” IEEE J. Quantum Electron. QE-21(11), 1833–1837 (1985).
[CrossRef]

1984

L. B. Whitbourn, “A 337 μm density interferometer for the lt-4 tokamak,” Int. J. Infrared Millimetre Waves 5(5), 625–635 (1984).
[CrossRef]

1983

M. Makiuchi, M. Kawamura, “A compact CW HCN gas laser with RF-excited discharge,” IEEE J. Quantum Electron. QE-19(6), 1115–1120 (1983).
[CrossRef]

1982

M. Makiuchi, M. Kawamura, “Effect of oxygen on compact CW-HCN laser,” Jpn. J. Appl. Phy. 21(5), 716–718 (1982).
[CrossRef]

1981

F. B. Foote, D. T. Hodges, H. B. Dyson, “Calibration of power and energy meters for the far infrared/near millimeter wave spectral region,” Int. J. Infrared Millimeter Waves 2(4), 773–782 (1981).
[CrossRef]

1980

L. W. Casperson, “Laser power calculations: sources of error,” Appl. Opt. 19, 422–434 (1980).
[CrossRef] [PubMed]

A. N. Topkov, V. A. Svich, N. G. Pokormyakho, “Stabilized HCN laser with HF pumping,” Instrum. Exp. Tech. 23(6), 1479–1481 (1980).

1979

P. Belland, J. P. Crenn, “Power scaling laws for CW HCN conventional Fabry–Perot lasers and comparison with CW HCN waveguide lasers,” Appl. Opt. 18, 1513–1517 (1979).
[CrossRef] [PubMed]

J. L. Bruneau, P. Belland, T. Lebertre, D. Veron, “CW HCN laser gain in a hollow dielectric rectangular cross-section discharge tube,” Appl. Phys. 19(3), 359–361 (1979).
[CrossRef]

1976

P. Belland, D. Veron, L. B. Whitbourn, “Scaling laws for CW 337-μm HCN waveguide lasers,” Appl. Opt. 15, 3047–3053 (1976).
[CrossRef] [PubMed]

J. Vanderkooy, C. S. Kang, “Design and characteristics of a 2m continuous wave HCN laser,” Infrared Phy. 16, 627–637 (1976).
[CrossRef]

1973

J. R. Birch, C. C. Bradley, “A variable loss determination of HCN laser gain,” Infrared Phys. 13(12), 99–108 (1973).
[CrossRef]

P. Belland, D. Veron, “A compact CW HCN laser with high stability and power output,” Opt. Commun. 9(2), 146–148 (1973).
[CrossRef]

1969

O. M. Stafsudd, Y. C. Yeh, “The CW gain characteristics of several gas mixtures at 337 μ,” IEEE J. Quantum Electron. QE-5, 377–380 (1969).
[CrossRef]

1967

L. O. Hocker, A. Javan, D. Ramachandra Ra, L. Frenkel, T. Sullivan, “Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared,” Appl. Phys. Lett. 10, 147–149 (1967).
[CrossRef]

D. R. Lide, A. G. Maki, “On the explanation of the so-called CN laser,” Appl. Phys. Lett. 11, 62–64 (1967).
[CrossRef]

1964

H. A. Gebbie, N. W. B. Stone, F. D. Findlay, “A stimulated emission source at 0.34 millimetre wavelength,” Nature (London) 202, 685 (1964).
[CrossRef]

E. A. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Aoki, T.

S. Okajima, K. Kawahata, T. Aoki, D. G. Bi, S. Kubo, J. Fujita, “Suppression of laser noise in CW 337 μm HCN lasers,” Infrared Phy. 29(2–4), 331–337 (1989).
[CrossRef]

Belland, P.

P. Belland, J. P. Crenn, “Power scaling laws for CW HCN conventional Fabry–Perot lasers and comparison with CW HCN waveguide lasers,” Appl. Opt. 18, 1513–1517 (1979).
[CrossRef] [PubMed]

J. L. Bruneau, P. Belland, T. Lebertre, D. Veron, “CW HCN laser gain in a hollow dielectric rectangular cross-section discharge tube,” Appl. Phys. 19(3), 359–361 (1979).
[CrossRef]

P. Belland, D. Veron, L. B. Whitbourn, “Scaling laws for CW 337-μm HCN waveguide lasers,” Appl. Opt. 15, 3047–3053 (1976).
[CrossRef] [PubMed]

P. Belland, D. Veron, “A compact CW HCN laser with high stability and power output,” Opt. Commun. 9(2), 146–148 (1973).
[CrossRef]

Bi, D. G.

S. Okajima, K. Kawahata, T. Aoki, D. G. Bi, S. Kubo, J. Fujita, “Suppression of laser noise in CW 337 μm HCN lasers,” Infrared Phy. 29(2–4), 331–337 (1989).
[CrossRef]

Birch, J. R.

J. R. Birch, C. C. Bradley, “A variable loss determination of HCN laser gain,” Infrared Phys. 13(12), 99–108 (1973).
[CrossRef]

Bradley, C. C.

J. R. Birch, C. C. Bradley, “A variable loss determination of HCN laser gain,” Infrared Phys. 13(12), 99–108 (1973).
[CrossRef]

Bruneau, J. L.

J. L. Bruneau, P. Belland, T. Lebertre, D. Veron, “CW HCN laser gain in a hollow dielectric rectangular cross-section discharge tube,” Appl. Phys. 19(3), 359–361 (1979).
[CrossRef]

Casperson, L. W.

Cooper, S.

S. Cooper, “A study of the indirect measurement of laser small signal gain and saturation irradiance and its application to an RF pumped HCN waveguide laser,” Ph.D. dissertation (University of Queensland, St. Lucia, Brisbane, Australia, 1994).

Cooper, S. J.

Crenn, J. P.

Dyson, H. B.

F. B. Foote, D. T. Hodges, H. B. Dyson, “Calibration of power and energy meters for the far infrared/near millimeter wave spectral region,” Int. J. Infrared Millimeter Waves 2(4), 773–782 (1981).
[CrossRef]

Falconer, I. S.

L. B. Whitbourn, J. C. Macfarlane, P. A. Stimson, B. W. James, I. S. Falconer, “An experimental study of a CW optically pumped far infrared formic acid vapour laser,” Infrared Phys. 28(1), 7–20 (1988).
[CrossRef]

Findlay, F. D.

H. A. Gebbie, N. W. B. Stone, F. D. Findlay, “A stimulated emission source at 0.34 millimetre wavelength,” Nature (London) 202, 685 (1964).
[CrossRef]

Foote, F. B.

F. B. Foote, D. T. Hodges, H. B. Dyson, “Calibration of power and energy meters for the far infrared/near millimeter wave spectral region,” Int. J. Infrared Millimeter Waves 2(4), 773–782 (1981).
[CrossRef]

Frenkel, L.

L. O. Hocker, A. Javan, D. Ramachandra Ra, L. Frenkel, T. Sullivan, “Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared,” Appl. Phys. Lett. 10, 147–149 (1967).
[CrossRef]

Fujita, J.

S. Okajima, K. Kawahata, T. Aoki, D. G. Bi, S. Kubo, J. Fujita, “Suppression of laser noise in CW 337 μm HCN lasers,” Infrared Phy. 29(2–4), 331–337 (1989).
[CrossRef]

Fukuyama, T.

M. K. M. Kawamura, I. Okabayashi, T. Fukuyama, “A capacitively coupled RF-excited CW-HCN laser,” IEEE J. Quantum Electron. QE-21(11), 1833–1837 (1985).
[CrossRef]

Gebbie, H. A.

H. A. Gebbie, N. W. B. Stone, F. D. Findlay, “A stimulated emission source at 0.34 millimetre wavelength,” Nature (London) 202, 685 (1964).
[CrossRef]

Heckenberg, N. R.

Hocker, L. O.

L. O. Hocker, A. Javan, D. Ramachandra Ra, L. Frenkel, T. Sullivan, “Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared,” Appl. Phys. Lett. 10, 147–149 (1967).
[CrossRef]

Hodges, D. T.

F. B. Foote, D. T. Hodges, H. B. Dyson, “Calibration of power and energy meters for the far infrared/near millimeter wave spectral region,” Int. J. Infrared Millimeter Waves 2(4), 773–782 (1981).
[CrossRef]

James, B. W.

L. B. Whitbourn, J. C. Macfarlane, P. A. Stimson, B. W. James, I. S. Falconer, “An experimental study of a CW optically pumped far infrared formic acid vapour laser,” Infrared Phys. 28(1), 7–20 (1988).
[CrossRef]

Javan, A.

L. O. Hocker, A. Javan, D. Ramachandra Ra, L. Frenkel, T. Sullivan, “Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared,” Appl. Phys. Lett. 10, 147–149 (1967).
[CrossRef]

Kamenev, Yu. E.

Yu. E. Kamenev, E. M. Kuleshov, “Waveguide HCN laser with controlled coupling,” Sov. J. Quantum Electron. 20(1), 48–49 (1990).
[CrossRef]

Kang, C. S.

J. Vanderkooy, C. S. Kang, “Design and characteristics of a 2m continuous wave HCN laser,” Infrared Phy. 16, 627–637 (1976).
[CrossRef]

Kawahata, K.

S. Okajima, K. Kawahata, T. Aoki, D. G. Bi, S. Kubo, J. Fujita, “Suppression of laser noise in CW 337 μm HCN lasers,” Infrared Phy. 29(2–4), 331–337 (1989).
[CrossRef]

Kawamura, M.

M. Makiuchi, M. Kawamura, “A compact CW HCN gas laser with RF-excited discharge,” IEEE J. Quantum Electron. QE-19(6), 1115–1120 (1983).
[CrossRef]

M. Makiuchi, M. Kawamura, “Effect of oxygen on compact CW-HCN laser,” Jpn. J. Appl. Phy. 21(5), 716–718 (1982).
[CrossRef]

Kawamura, M. K. M.

M. K. M. Kawamura, I. Okabayashi, T. Fukuyama, “A capacitively coupled RF-excited CW-HCN laser,” IEEE J. Quantum Electron. QE-21(11), 1833–1837 (1985).
[CrossRef]

Kubarev, V. V.

V. V. Kubarev, “Optimised HCN laser,” Instrum. Exp. Tech. 29(3), 697–699 (1986).

Kubo, S.

S. Okajima, K. Kawahata, T. Aoki, D. G. Bi, S. Kubo, J. Fujita, “Suppression of laser noise in CW 337 μm HCN lasers,” Infrared Phy. 29(2–4), 331–337 (1989).
[CrossRef]

Kuleshov, E. M.

Yu. E. Kamenev, E. M. Kuleshov, “Waveguide HCN laser with controlled coupling,” Sov. J. Quantum Electron. 20(1), 48–49 (1990).
[CrossRef]

Lamb, W. E.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

Lebertre, T.

J. L. Bruneau, P. Belland, T. Lebertre, D. Veron, “CW HCN laser gain in a hollow dielectric rectangular cross-section discharge tube,” Appl. Phys. 19(3), 359–361 (1979).
[CrossRef]

Lide, D. R.

D. R. Lide, A. G. Maki, “On the explanation of the so-called CN laser,” Appl. Phys. Lett. 11, 62–64 (1967).
[CrossRef]

Macfarlane, J. C.

L. B. Whitbourn, J. C. Macfarlane, P. A. Stimson, B. W. James, I. S. Falconer, “An experimental study of a CW optically pumped far infrared formic acid vapour laser,” Infrared Phys. 28(1), 7–20 (1988).
[CrossRef]

Maki, A. G.

D. R. Lide, A. G. Maki, “On the explanation of the so-called CN laser,” Appl. Phys. Lett. 11, 62–64 (1967).
[CrossRef]

Makiuchi, M.

M. Makiuchi, M. Kawamura, “A compact CW HCN gas laser with RF-excited discharge,” IEEE J. Quantum Electron. QE-19(6), 1115–1120 (1983).
[CrossRef]

M. Makiuchi, M. Kawamura, “Effect of oxygen on compact CW-HCN laser,” Jpn. J. Appl. Phy. 21(5), 716–718 (1982).
[CrossRef]

Marcatili, E. A.

E. A. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Okabayashi, I.

M. K. M. Kawamura, I. Okabayashi, T. Fukuyama, “A capacitively coupled RF-excited CW-HCN laser,” IEEE J. Quantum Electron. QE-21(11), 1833–1837 (1985).
[CrossRef]

Okajima, S.

S. Okajima, K. Kawahata, T. Aoki, D. G. Bi, S. Kubo, J. Fujita, “Suppression of laser noise in CW 337 μm HCN lasers,” Infrared Phy. 29(2–4), 331–337 (1989).
[CrossRef]

Pokormyakho, N. G.

A. N. Topkov, V. A. Svich, N. G. Pokormyakho, “Stabilized HCN laser with HF pumping,” Instrum. Exp. Tech. 23(6), 1479–1481 (1980).

Ra, D. Ramachandra

L. O. Hocker, A. Javan, D. Ramachandra Ra, L. Frenkel, T. Sullivan, “Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared,” Appl. Phys. Lett. 10, 147–149 (1967).
[CrossRef]

Sargent, M.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

Schmeltzer, R. A.

E. A. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Scully, M. O.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

Stafsudd, O. M.

O. M. Stafsudd, Y. C. Yeh, “The CW gain characteristics of several gas mixtures at 337 μ,” IEEE J. Quantum Electron. QE-5, 377–380 (1969).
[CrossRef]

Stimson, P. A.

L. B. Whitbourn, J. C. Macfarlane, P. A. Stimson, B. W. James, I. S. Falconer, “An experimental study of a CW optically pumped far infrared formic acid vapour laser,” Infrared Phys. 28(1), 7–20 (1988).
[CrossRef]

Stone, N. W. B.

H. A. Gebbie, N. W. B. Stone, F. D. Findlay, “A stimulated emission source at 0.34 millimetre wavelength,” Nature (London) 202, 685 (1964).
[CrossRef]

Sullivan, T.

L. O. Hocker, A. Javan, D. Ramachandra Ra, L. Frenkel, T. Sullivan, “Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared,” Appl. Phys. Lett. 10, 147–149 (1967).
[CrossRef]

Svich, V. A.

A. N. Topkov, V. A. Svich, N. G. Pokormyakho, “Stabilized HCN laser with HF pumping,” Instrum. Exp. Tech. 23(6), 1479–1481 (1980).

Topkov, A. N.

A. N. Topkov, V. A. Svich, N. G. Pokormyakho, “Stabilized HCN laser with HF pumping,” Instrum. Exp. Tech. 23(6), 1479–1481 (1980).

Vanderkooy, J.

J. Vanderkooy, C. S. Kang, “Design and characteristics of a 2m continuous wave HCN laser,” Infrared Phy. 16, 627–637 (1976).
[CrossRef]

Veron, D.

J. L. Bruneau, P. Belland, T. Lebertre, D. Veron, “CW HCN laser gain in a hollow dielectric rectangular cross-section discharge tube,” Appl. Phys. 19(3), 359–361 (1979).
[CrossRef]

P. Belland, D. Veron, L. B. Whitbourn, “Scaling laws for CW 337-μm HCN waveguide lasers,” Appl. Opt. 15, 3047–3053 (1976).
[CrossRef] [PubMed]

P. Belland, D. Veron, “A compact CW HCN laser with high stability and power output,” Opt. Commun. 9(2), 146–148 (1973).
[CrossRef]

Whitbourn, L. B.

L. B. Whitbourn, J. C. Macfarlane, P. A. Stimson, B. W. James, I. S. Falconer, “An experimental study of a CW optically pumped far infrared formic acid vapour laser,” Infrared Phys. 28(1), 7–20 (1988).
[CrossRef]

L. B. Whitbourn, “A 337 μm density interferometer for the lt-4 tokamak,” Int. J. Infrared Millimetre Waves 5(5), 625–635 (1984).
[CrossRef]

P. Belland, D. Veron, L. B. Whitbourn, “Scaling laws for CW 337-μm HCN waveguide lasers,” Appl. Opt. 15, 3047–3053 (1976).
[CrossRef] [PubMed]

Yeh, Y. C.

O. M. Stafsudd, Y. C. Yeh, “The CW gain characteristics of several gas mixtures at 337 μ,” IEEE J. Quantum Electron. QE-5, 377–380 (1969).
[CrossRef]

Appl. Opt.

Appl. Phys.

J. L. Bruneau, P. Belland, T. Lebertre, D. Veron, “CW HCN laser gain in a hollow dielectric rectangular cross-section discharge tube,” Appl. Phys. 19(3), 359–361 (1979).
[CrossRef]

Appl. Phys. Lett.

L. O. Hocker, A. Javan, D. Ramachandra Ra, L. Frenkel, T. Sullivan, “Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared,” Appl. Phys. Lett. 10, 147–149 (1967).
[CrossRef]

D. R. Lide, A. G. Maki, “On the explanation of the so-called CN laser,” Appl. Phys. Lett. 11, 62–64 (1967).
[CrossRef]

Bell Syst. Tech. J.

E. A. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

IEEE J. Quantum Electron.

M. Makiuchi, M. Kawamura, “A compact CW HCN gas laser with RF-excited discharge,” IEEE J. Quantum Electron. QE-19(6), 1115–1120 (1983).
[CrossRef]

M. K. M. Kawamura, I. Okabayashi, T. Fukuyama, “A capacitively coupled RF-excited CW-HCN laser,” IEEE J. Quantum Electron. QE-21(11), 1833–1837 (1985).
[CrossRef]

O. M. Stafsudd, Y. C. Yeh, “The CW gain characteristics of several gas mixtures at 337 μ,” IEEE J. Quantum Electron. QE-5, 377–380 (1969).
[CrossRef]

Infrared Phy.

S. Okajima, K. Kawahata, T. Aoki, D. G. Bi, S. Kubo, J. Fujita, “Suppression of laser noise in CW 337 μm HCN lasers,” Infrared Phy. 29(2–4), 331–337 (1989).
[CrossRef]

J. Vanderkooy, C. S. Kang, “Design and characteristics of a 2m continuous wave HCN laser,” Infrared Phy. 16, 627–637 (1976).
[CrossRef]

Infrared Phys.

L. B. Whitbourn, J. C. Macfarlane, P. A. Stimson, B. W. James, I. S. Falconer, “An experimental study of a CW optically pumped far infrared formic acid vapour laser,” Infrared Phys. 28(1), 7–20 (1988).
[CrossRef]

J. R. Birch, C. C. Bradley, “A variable loss determination of HCN laser gain,” Infrared Phys. 13(12), 99–108 (1973).
[CrossRef]

Instrum. Exp. Tech.

V. V. Kubarev, “Optimised HCN laser,” Instrum. Exp. Tech. 29(3), 697–699 (1986).

A. N. Topkov, V. A. Svich, N. G. Pokormyakho, “Stabilized HCN laser with HF pumping,” Instrum. Exp. Tech. 23(6), 1479–1481 (1980).

Int. J. Infrared Millimeter Waves

F. B. Foote, D. T. Hodges, H. B. Dyson, “Calibration of power and energy meters for the far infrared/near millimeter wave spectral region,” Int. J. Infrared Millimeter Waves 2(4), 773–782 (1981).
[CrossRef]

Int. J. Infrared Millimetre Waves

L. B. Whitbourn, “A 337 μm density interferometer for the lt-4 tokamak,” Int. J. Infrared Millimetre Waves 5(5), 625–635 (1984).
[CrossRef]

Jpn. J. Appl. Phy.

M. Makiuchi, M. Kawamura, “Effect of oxygen on compact CW-HCN laser,” Jpn. J. Appl. Phy. 21(5), 716–718 (1982).
[CrossRef]

Nature (London)

H. A. Gebbie, N. W. B. Stone, F. D. Findlay, “A stimulated emission source at 0.34 millimetre wavelength,” Nature (London) 202, 685 (1964).
[CrossRef]

Opt. Commun.

P. Belland, D. Veron, “A compact CW HCN laser with high stability and power output,” Opt. Commun. 9(2), 146–148 (1973).
[CrossRef]

Sov. J. Quantum Electron.

Yu. E. Kamenev, E. M. Kuleshov, “Waveguide HCN laser with controlled coupling,” Sov. J. Quantum Electron. 20(1), 48–49 (1990).
[CrossRef]

Other

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974).

S. Cooper, “A study of the indirect measurement of laser small signal gain and saturation irradiance and its application to an RF pumped HCN waveguide laser,” Ph.D. dissertation (University of Queensland, St. Lucia, Brisbane, Australia, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Basic setup of the laser and detection optics. D1, thermopile detector; D2, Scientech calorimeter; A, attenuator; M1, translatable solid aluminum mirror for cavity tuning; M2, M5, M6, M7, and M8, aluminized flat glass mirror (M5 kinematically mounted, M8 translatable for Michelson coupler adjustment); M3 and M4, aluminized curved glass mirrors; G, grid coupler; H, hole coupler. The Michelson coupler shown in (c) employed the same detection setup as the grid coupler in (a). The coil in the RF impedance matching circuit consisted of 11 turns of 4-mm-thick copper wire of 95 mm in diameter and 135 mm in length with the generator tap three turns, the capacitor tap five turns, and the discharge electrode tap six turns from the ground end of the coil. Capacitor C1 could be varied between 20 and 600 pF and C2 between 10 and 300 pF.

Fig. 2
Fig. 2

Variation of submillimeter output power with oil bath temperature. Curves A, C, E, and G correspond to operation at 1000 W, and curves B, D, and F correspond to operation at 500 W. The gas mixture is indicated next to each curve, and the operating conditions under which the data were taken are listed in Table 2 by curve letter.

Fig. 3
Fig. 3

Variation of output power with pressure for the 1:2:0 gas mixture. Curves H and J correspond to operation at 500 W and with 6 and 14% grid couplers, whereas curves K and L correspond to operation at 1000 W with the hole coupler and oil temperatures of 110 and 140 °C. The operating conditions under which the data were taken are listed in Table 2 by curve letter.

Fig. 4
Fig. 4

Variation of output power with gas pressure for all four gas mixtures. The gas mixture is indicated next to each curve, and the operating conditions under which the data were taken are listed in Table 2 by curve letter.

Fig. 5
Fig. 5

Variation of output power with gas flow rate for all four gas mixtures. Curves R and S correspond to the 1:1:0 gas mixture under similar conditions except for the operating pressure that was set at 125 and 40 Pa. The output values for the 40-Pa curve were multiplied by five to make the curve shape discernable. The gas mixture is indicated next to each curve, and the operating conditions under which the data were taken are listed in Table 2 by curve letter.

Fig. 6
Fig. 6

Variation of output power with RF driving power for the four gas mixtures. The operating conditions were set to the optimized values listed in Table 1.

Fig. 7
Fig. 7

Variation of (a) the square root of saturation irradiance, (b) single-pass small signal gain and (c) predicted output powers with pressure for the 1:2:0, 1:1:0, 2:1:0, and 8:3:36 mixtures of methane, nitrogen, and helium. In addition, (c) also shows the measured output power curve for the 1:2:0 mixture.

Fig. 8
Fig. 8

Variation of (a) saturation irradiance, (b) single-pass small signal gain, and (c) predicted output powers with oil temperature for the 1:2:0, 1:1:0, and 8:3:36 mixtures of methane, nitrogen, and helium.

Fig. 9
Fig. 9

Variation of (a) saturation irradiance, (b) single-pass small signal gain, and (c) predicted output powers with gas flow rate for the 1:2:0, 1:1:0, and 8:3:36 mixtures of methane, nitrogen, and helium.

Tables (3)

Tables Icon

Table 1 Optimum Operating Parameters at a RF Driving Power of 1000 W and Corresponding Maximum Output Powers

Tables Icon

Table 2 Collation of Operating Conditions for all the Curves Shown in this Papera

Tables Icon

Table 3 Small Signal Gain, Saturation Irradiance, and Predicted and Measured Output Powers at a RF Driving Power of 500 W

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I s = 2 2 μ 0 / 0 γ γ a γ b γ a + γ b ,
γ = γ a + γ b / 2 + γ ph ,
γ col     P T ,
γ a = K a P T ,
γ b = K b P T ,
γ ph = K ph P T .
I s = 2 2 μ 0 / 0 K a K b K a + K b K a + K b 2 + K ph P 2 T .
T π ω 2 I s 4 P log 1 + 4 P T π ω 2 I s = T + 2 A tot 2 G 0 ,
T = T max 2 1 - cos 4 π λ Δ z - Δ z 0 ,
A c = A f + A a sin 4 π λ Δ z - Δ z 0 ,

Metrics