Abstract

The output of a grating-stabilized external-cavity diode laser was injected into a semiconductor tapered amplifier in a master-oscillator power amplifier configuration, producing as much as 500 mW of power with narrow linewidth. The additional linewidth that is due to the tapered amplifier is much smaller than the typical linewidth of grating-stabilized laser diodes. To demonstrate the usefulness of the narrow linewidth and high output power, we used the system to perform Doppler-free two-photon spectroscopy with rubidium.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623–645 (1996).
    [CrossRef]
  2. K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
    [CrossRef]
  3. J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE2834, 34–40 (1996).
    [CrossRef]
  4. C. Zimmerman, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
    [CrossRef]
  5. R. E. Ryan, L. A. Westling, H. J. Metcalf, “Two-photon spectroscopy in rubidium with a diode laser,” J. Opt. Soc. Am. B 10, 1643–1648 (1993).
    [CrossRef]
  6. R. E. Ryan, L. A. Westling, R. Blümel, H. J. Metcalf, “Two-photon spectroscopy: a technique for characterizing diode-laser noise,” Phys. Rev. A 52, 3157–3169 (1995).
    [CrossRef] [PubMed]
  7. F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
    [CrossRef]
  8. Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Towards an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
    [CrossRef]
  9. C. S. Adams, A. I. Ferguson, “Saturated spectroscopy and two-photon absorption spectroscopy in rubidium using an actively stabilised Ti:Al2O3 ring laser,” Opt. Commun. 75, 419–424 (1990).
    [CrossRef]
  10. The mounting block is the anode and the pin connector is the cathode. We connected a lead to the cathode pin by using a low-temperature solder while protecting the optical surfaces from smoke.
  11. L. W. Hollberg, Optical Frequency Measurements Group, National Institute of Standards and Technology, 325 Broadway, Boulder, Colo. 80303 (personal communication, 1997).
  12. B. P. Stoicheff, E. Weinberger, “Frequency shifts, line broadening, and phase interference effects in Rb** + Rb collisions, measured by Doppler-free two-photon spectroscopy,” Phys. Rev. Lett. 44, 733–736 (1980).
    [CrossRef]

1996 (1)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623–645 (1996).
[CrossRef]

1995 (2)

C. Zimmerman, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

R. E. Ryan, L. A. Westling, R. Blümel, H. J. Metcalf, “Two-photon spectroscopy: a technique for characterizing diode-laser noise,” Phys. Rev. A 52, 3157–3169 (1995).
[CrossRef] [PubMed]

1994 (1)

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Towards an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[CrossRef]

1993 (2)

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

R. E. Ryan, L. A. Westling, H. J. Metcalf, “Two-photon spectroscopy in rubidium with a diode laser,” J. Opt. Soc. Am. B 10, 1643–1648 (1993).
[CrossRef]

1992 (1)

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

1990 (1)

C. S. Adams, A. I. Ferguson, “Saturated spectroscopy and two-photon absorption spectroscopy in rubidium using an actively stabilised Ti:Al2O3 ring laser,” Opt. Commun. 75, 419–424 (1990).
[CrossRef]

1980 (1)

B. P. Stoicheff, E. Weinberger, “Frequency shifts, line broadening, and phase interference effects in Rb** + Rb collisions, measured by Doppler-free two-photon spectroscopy,” Phys. Rev. Lett. 44, 733–736 (1980).
[CrossRef]

Adams, C. S.

C. S. Adams, A. I. Ferguson, “Saturated spectroscopy and two-photon absorption spectroscopy in rubidium using an actively stabilised Ti:Al2O3 ring laser,” Opt. Commun. 75, 419–424 (1990).
[CrossRef]

Bergquist, J. C.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE2834, 34–40 (1996).
[CrossRef]

Biraben, F.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Towards an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[CrossRef]

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Blümel, R.

R. E. Ryan, L. A. Westling, R. Blümel, H. J. Metcalf, “Two-photon spectroscopy: a technique for characterizing diode-laser noise,” Phys. Rev. A 52, 3157–3169 (1995).
[CrossRef] [PubMed]

Clairon, A.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Towards an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[CrossRef]

Cruz, F. C.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE2834, 34–40 (1996).
[CrossRef]

de Beauvoir, B.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Towards an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[CrossRef]

Felder, R.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Towards an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[CrossRef]

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Ferguson, A. I.

C. S. Adams, A. I. Ferguson, “Saturated spectroscopy and two-photon absorption spectroscopy in rubidium using an actively stabilised Ti:Al2O3 ring laser,” Opt. Commun. 75, 419–424 (1990).
[CrossRef]

Hänsch, T. W.

C. Zimmerman, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

Hemmerich, A.

C. Zimmerman, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

Hilico, L.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Towards an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[CrossRef]

Hollberg, L. W.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE2834, 34–40 (1996).
[CrossRef]

L. W. Hollberg, Optical Frequency Measurements Group, National Institute of Standards and Technology, 325 Broadway, Boulder, Colo. 80303 (personal communication, 1997).

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Marquardt, J. H.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE2834, 34–40 (1996).
[CrossRef]

Mehuys, D. G.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE2834, 34–40 (1996).
[CrossRef]

Metcalf, H. J.

R. E. Ryan, L. A. Westling, R. Blümel, H. J. Metcalf, “Two-photon spectroscopy: a technique for characterizing diode-laser noise,” Phys. Rev. A 52, 3157–3169 (1995).
[CrossRef] [PubMed]

R. E. Ryan, L. A. Westling, H. J. Metcalf, “Two-photon spectroscopy in rubidium with a diode laser,” J. Opt. Soc. Am. B 10, 1643–1648 (1993).
[CrossRef]

Millerioux, Y.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Towards an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[CrossRef]

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Nez, F.

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Oates, C. W.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE2834, 34–40 (1996).
[CrossRef]

Ryan, R. E.

R. E. Ryan, L. A. Westling, R. Blümel, H. J. Metcalf, “Two-photon spectroscopy: a technique for characterizing diode-laser noise,” Phys. Rev. A 52, 3157–3169 (1995).
[CrossRef] [PubMed]

R. E. Ryan, L. A. Westling, H. J. Metcalf, “Two-photon spectroscopy in rubidium with a diode laser,” J. Opt. Soc. Am. B 10, 1643–1648 (1993).
[CrossRef]

Sanders, S.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE2834, 34–40 (1996).
[CrossRef]

Steinbach, A.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Stephens, M.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE2834, 34–40 (1996).
[CrossRef]

Stoicheff, B. P.

B. P. Stoicheff, E. Weinberger, “Frequency shifts, line broadening, and phase interference effects in Rb** + Rb collisions, measured by Doppler-free two-photon spectroscopy,” Phys. Rev. Lett. 44, 733–736 (1980).
[CrossRef]

Touahri, D.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Towards an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[CrossRef]

Vuletic, V.

C. Zimmerman, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

Walpole, J. N.

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623–645 (1996).
[CrossRef]

Weinberger, E.

B. P. Stoicheff, E. Weinberger, “Frequency shifts, line broadening, and phase interference effects in Rb** + Rb collisions, measured by Doppler-free two-photon spectroscopy,” Phys. Rev. Lett. 44, 733–736 (1980).
[CrossRef]

Welch, D. F.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE2834, 34–40 (1996).
[CrossRef]

Westling, L. A.

R. E. Ryan, L. A. Westling, R. Blümel, H. J. Metcalf, “Two-photon spectroscopy: a technique for characterizing diode-laser noise,” Phys. Rev. A 52, 3157–3169 (1995).
[CrossRef] [PubMed]

R. E. Ryan, L. A. Westling, H. J. Metcalf, “Two-photon spectroscopy in rubidium with a diode laser,” J. Opt. Soc. Am. B 10, 1643–1648 (1993).
[CrossRef]

Wieman, C.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Zimmerman, C.

C. Zimmerman, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

Am. J. Phys. (1)

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

C. Zimmerman, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

F. Nez, F. Biraben, R. Felder, Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Towards an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[CrossRef]

C. S. Adams, A. I. Ferguson, “Saturated spectroscopy and two-photon absorption spectroscopy in rubidium using an actively stabilised Ti:Al2O3 ring laser,” Opt. Commun. 75, 419–424 (1990).
[CrossRef]

Opt. Quantum Electron. (1)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623–645 (1996).
[CrossRef]

Phys. Rev. A (1)

R. E. Ryan, L. A. Westling, R. Blümel, H. J. Metcalf, “Two-photon spectroscopy: a technique for characterizing diode-laser noise,” Phys. Rev. A 52, 3157–3169 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

B. P. Stoicheff, E. Weinberger, “Frequency shifts, line broadening, and phase interference effects in Rb** + Rb collisions, measured by Doppler-free two-photon spectroscopy,” Phys. Rev. Lett. 44, 733–736 (1980).
[CrossRef]

Other (3)

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE2834, 34–40 (1996).
[CrossRef]

The mounting block is the anode and the pin connector is the cathode. We connected a lead to the cathode pin by using a low-temperature solder while protecting the optical surfaces from smoke.

L. W. Hollberg, Optical Frequency Measurements Group, National Institute of Standards and Technology, 325 Broadway, Boulder, Colo. 80303 (personal communication, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the MOPA arrangement. Light from an ECDL passes through optical isolators, beam-shaping optics, an AOM, and polarizing optics before being focused into a TA. The astigmatism of the TA output beam is corrected by the collimation optics.

Fig. 2
Fig. 2

Output power versus injection current for an input power of 3 mW at 778 nm from the ECDL. Well above threshold, the slope efficiency is 0.76 W/A.

Fig. 3
Fig. 3

Output power versus injected power from the ECDL with an injection current to the TA of 1 A. The output power saturates at input powers above ∼3 mW.

Fig. 4
Fig. 4

Broadband spectrum of the MOPA output with injection of the ECDL at 778 nm (crosses) and without injection (circles). Without injection the output is broadband ASE. With injection of the ECDL the laser output suppresses the broadband ASE. The measurements were made with a grating monchromator (resolution, 0.1 nm).

Fig. 5
Fig. 5

Heterodyne signal obtained by superimposing the TA and ECDL outputs upon a fast photodiode. The signal is centered on the AOM frequency, and the linewidth obtained from this plot is approximately 1 kHz (the resolution bandwidth of the spectrum analyzer).

Fig. 6
Fig. 6

Energy-level diagram showing the rubidium two-photon transition 52 S 1/2 → 52 D 3/2 transition at 777.98 nm and the radiative cascade 62 P 3/2 → 52 S 1/2 at 420.2 nm.

Fig. 7
Fig. 7

Schematic of the rubidium Doppler-free two-photon experiment. The MOPA output is focused into a rubidium cell with a singlet lens, and the transmitted beam is retroreflected with a spherical mirror. An additional isolator is used to protect the MOPA from optical feedback in this configuration (total isolation is 70 dB). Fluorescence at 420.2 nm is collected with an aspheric lens and imaged onto a photomultiplier (PMT).

Fig. 8
Fig. 8

Doppler-free two-photon spectra of the 52 S 1/2 → 52 D 3/2 transition, showing excitation from the ground-state F = 2 level in both rubidium isotopes. The signal-to-noise ratio is not sufficient to permit the weak 85Rb F = 2 → F′ = 1 transition to be distinguished.

Metrics