Abstract

An experimental demonstration of a noninvasive optical probe of magnetic fields is presented. The technique used is magnetic rotation spectroscopy of the b 1Σg + - X 3Σg - band of oxygen near 760 nm. Ambient concentrations of oxygen at atmospheric pressure are sufficient to observe substantial signals. In addition, a diode laser is used as the light source, making this a simple and compact measurement possibility.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Faraday, “Experimental researches in electricity,” in Great Books of the Western World, R. M. Hutchins, ed. (Encyclopedia Britannica, Chicago, 1952) Vol. 45, pp. 595–632.
  2. P. Zeeman, Researches in Magneto-optics (Macmillan, London, 1913).
  3. J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
    [CrossRef]
  4. M. C. McCarthy, J. C. Bloch, R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: a sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys. 100, 6331–6346 (1994).
    [CrossRef]
  5. M. C. McCarthy, R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy of PdH, PdD, NiH and CuH,” J. Chem. Phys. 100, 6347–6358 (1994).
    [CrossRef]
  6. J. M. Smith, J. C. Bloch, R. W. Field, J. I. Steinfeld, “Trace detection of NO2 by frequency-modulation-enhanced magnetic rotation spectroscopy,” J. Opt. Soc. Am. B 12, 964–969 (1995).
    [CrossRef]
  7. T. A. Blake, C. Chackerian, J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt. 35, 973–985 (1996).
    [CrossRef] [PubMed]
  8. Y. Takubo, K. Muroo, S. Miwa, K. Yamamoto, K. Suzuki, M. Yamamoto, “Resonant magneto-optic spectra of the b1Σg+ - X3Σg- transition of oxygen molecules,” J. Mol. Spectrosc. 178, 31–39 (1996).
    [CrossRef]
  9. A. Slenczka, “Detection of ‘cold’ spectra from a room-temperature ensemble: magnetic rotation spectroscopy with simple interpretation in terms of molecular pendular states,” J. Phys. Chem. A 101, 7657–7663 (1997).
    [CrossRef]
  10. R. J. Brecha, L. M. Pedrotti, D. Krause, “Magnetic rotation spectroscopy of molecular oxygen with a diode laser,” J. Opt. Soc. Am. B 14, 1921–1930 (1997).
    [CrossRef]
  11. G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitive enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
    [CrossRef]
  12. K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
    [CrossRef]
  13. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]

1997

A. Slenczka, “Detection of ‘cold’ spectra from a room-temperature ensemble: magnetic rotation spectroscopy with simple interpretation in terms of molecular pendular states,” J. Phys. Chem. A 101, 7657–7663 (1997).
[CrossRef]

R. J. Brecha, L. M. Pedrotti, D. Krause, “Magnetic rotation spectroscopy of molecular oxygen with a diode laser,” J. Opt. Soc. Am. B 14, 1921–1930 (1997).
[CrossRef]

1996

T. A. Blake, C. Chackerian, J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt. 35, 973–985 (1996).
[CrossRef] [PubMed]

Y. Takubo, K. Muroo, S. Miwa, K. Yamamoto, K. Suzuki, M. Yamamoto, “Resonant magneto-optic spectra of the b1Σg+ - X3Σg- transition of oxygen molecules,” J. Mol. Spectrosc. 178, 31–39 (1996).
[CrossRef]

1995

1994

M. C. McCarthy, J. C. Bloch, R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: a sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys. 100, 6331–6346 (1994).
[CrossRef]

M. C. McCarthy, R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy of PdH, PdD, NiH and CuH,” J. Chem. Phys. 100, 6347–6358 (1994).
[CrossRef]

1987

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

1981

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

1980

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitive enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Blake, T. A.

Bloch, J. C.

J. M. Smith, J. C. Bloch, R. W. Field, J. I. Steinfeld, “Trace detection of NO2 by frequency-modulation-enhanced magnetic rotation spectroscopy,” J. Opt. Soc. Am. B 12, 964–969 (1995).
[CrossRef]

M. C. McCarthy, J. C. Bloch, R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: a sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys. 100, 6331–6346 (1994).
[CrossRef]

Brecha, R. J.

Chackerian, C.

Curl, R. F.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitive enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Faraday, M.

M. Faraday, “Experimental researches in electricity,” in Great Books of the Western World, R. M. Hutchins, ed. (Encyclopedia Britannica, Chicago, 1952) Vol. 45, pp. 595–632.

Field, R. W.

J. M. Smith, J. C. Bloch, R. W. Field, J. I. Steinfeld, “Trace detection of NO2 by frequency-modulation-enhanced magnetic rotation spectroscopy,” J. Opt. Soc. Am. B 12, 964–969 (1995).
[CrossRef]

M. C. McCarthy, R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy of PdH, PdD, NiH and CuH,” J. Chem. Phys. 100, 6347–6358 (1994).
[CrossRef]

M. C. McCarthy, J. C. Bloch, R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: a sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys. 100, 6331–6346 (1994).
[CrossRef]

Kalkert, P.

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Kirsten, D.

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Krause, D.

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Litfin, G.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitive enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

McCarthy, M. C.

M. C. McCarthy, J. C. Bloch, R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: a sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys. 100, 6331–6346 (1994).
[CrossRef]

M. C. McCarthy, R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy of PdH, PdD, NiH and CuH,” J. Chem. Phys. 100, 6347–6358 (1994).
[CrossRef]

Miwa, S.

Y. Takubo, K. Muroo, S. Miwa, K. Yamamoto, K. Suzuki, M. Yamamoto, “Resonant magneto-optic spectra of the b1Σg+ - X3Σg- transition of oxygen molecules,” J. Mol. Spectrosc. 178, 31–39 (1996).
[CrossRef]

Muroo, K.

Y. Takubo, K. Muroo, S. Miwa, K. Yamamoto, K. Suzuki, M. Yamamoto, “Resonant magneto-optic spectra of the b1Σg+ - X3Σg- transition of oxygen molecules,” J. Mol. Spectrosc. 178, 31–39 (1996).
[CrossRef]

Pedrotti, L. M.

Pfeiffer, J.

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Podolske, J. R.

Pollock, C. R.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitive enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Ritter, K. J.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Slenczka, A.

A. Slenczka, “Detection of ‘cold’ spectra from a room-temperature ensemble: magnetic rotation spectroscopy with simple interpretation in terms of molecular pendular states,” J. Phys. Chem. A 101, 7657–7663 (1997).
[CrossRef]

Smith, J. M.

Steinfeld, J. I.

Suzuki, K.

Y. Takubo, K. Muroo, S. Miwa, K. Yamamoto, K. Suzuki, M. Yamamoto, “Resonant magneto-optic spectra of the b1Σg+ - X3Σg- transition of oxygen molecules,” J. Mol. Spectrosc. 178, 31–39 (1996).
[CrossRef]

Takubo, Y.

Y. Takubo, K. Muroo, S. Miwa, K. Yamamoto, K. Suzuki, M. Yamamoto, “Resonant magneto-optic spectra of the b1Σg+ - X3Σg- transition of oxygen molecules,” J. Mol. Spectrosc. 178, 31–39 (1996).
[CrossRef]

Tittel, F. K.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitive enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Urban, W.

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Wilkerson, T. D.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Yamamoto, K.

Y. Takubo, K. Muroo, S. Miwa, K. Yamamoto, K. Suzuki, M. Yamamoto, “Resonant magneto-optic spectra of the b1Σg+ - X3Σg- transition of oxygen molecules,” J. Mol. Spectrosc. 178, 31–39 (1996).
[CrossRef]

Yamamoto, M.

Y. Takubo, K. Muroo, S. Miwa, K. Yamamoto, K. Suzuki, M. Yamamoto, “Resonant magneto-optic spectra of the b1Σg+ - X3Σg- transition of oxygen molecules,” J. Mol. Spectrosc. 178, 31–39 (1996).
[CrossRef]

Zeeman, P.

P. Zeeman, Researches in Magneto-optics (Macmillan, London, 1913).

Appl. Opt.

Appl. Phys. B

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

J. Chem. Phys.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitive enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

M. C. McCarthy, J. C. Bloch, R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy: a sensitive and selective absorption scheme for paramagnetic molecules,” J. Chem. Phys. 100, 6331–6346 (1994).
[CrossRef]

M. C. McCarthy, R. W. Field, “Frequency-modulation enhanced magnetic rotation spectroscopy of PdH, PdD, NiH and CuH,” J. Chem. Phys. 100, 6347–6358 (1994).
[CrossRef]

J. Mol. Spectrosc.

Y. Takubo, K. Muroo, S. Miwa, K. Yamamoto, K. Suzuki, M. Yamamoto, “Resonant magneto-optic spectra of the b1Σg+ - X3Σg- transition of oxygen molecules,” J. Mol. Spectrosc. 178, 31–39 (1996).
[CrossRef]

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

A. Slenczka, “Detection of ‘cold’ spectra from a room-temperature ensemble: magnetic rotation spectroscopy with simple interpretation in terms of molecular pendular states,” J. Phys. Chem. A 101, 7657–7663 (1997).
[CrossRef]

Other

M. Faraday, “Experimental researches in electricity,” in Great Books of the Western World, R. M. Hutchins, ed. (Encyclopedia Britannica, Chicago, 1952) Vol. 45, pp. 595–632.

P. Zeeman, Researches in Magneto-optics (Macmillan, London, 1913).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic energy-level diagrams and magnetic rotation signals for a J = 0 ← J = 1 transition. In (a) the energy levels are shown in the absence of a magnetic field, with the corresponding indices of refraction n + and n - for σ+ and σ- light as a function of laser frequency sketched in (b). The difference between the two indices is zero in this case, independent of frequency. In (b) the vertical line indicates the resonance frequency ω0. For an applied magnetic field the energy degeneracy is lifted because of Zeeman splitting as shown in the schematic energy-level diagram in (c). The resonance frequencies for σ+ and σ- polarizations are now shifted, and the difference between indices of refraction, as shown in (d), is thus nonzero near resonance, leading to a differential phase shift and rotation of the polarization of the light traversing the medium. Again, the vertical line in (d) represents the zero-field resonance frequency ω0.

Fig. 2
Fig. 2

Experimental schematic for MRS magnetic-field measurement. The main components include the laser diode, two nearly crossed polarizers (P1, P2), and the magnetized iron bar that is the source of the field to be measured. The detection system includes two detectors (D1, D2), with D2 being used to cancel any background effects, along with a lock-in amplifier and an oscilloscope and computer (pc).

Fig. 3
Fig. 3

MRS signals for different magnet distances from the laser path. Plotted as well is a theoretical curve (labeled with an arrow) to show the good agreement between the predicted and the experimental signal widths. Starting with the largest experimental data trace, the distances are 3.0, 8.0, 14.0, and 30.0 mm, respectively, for the four experimental traces shown. The abscissa is the relative laser frequency with respect to the transition center frequency, and the ordinate is the lock-in amplifier output signal in volts. These traces represent data for which a trace with the magnet completely removed has been subtracted from each of the raw data sets.

Fig. 4
Fig. 4

Plot of the MRS signal peak height versus distance of the magnet from the laser path (open boxes) and a plot for three points of the integrated magnetic field (units of Gauss cm) versus the same quantity.

Fig. 5
Fig. 5

Profile of the measured magnetic field in the region between the two polarizers, as measured with a Hall probe.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I T = 1 2   ε 0 cE 0 2 1 - cos 2 θ - ϕ R - ϕ L .
I T I 0 θ κ l f L - f R .
f L , R = ω ω - ω L , R γ 2 + ω - ω L , R 2 ,
S MRS = 1 4   θ κ la m 2 d 2 d ω 2 f L - f R .

Metrics