Abstract

We report quantitative, spatially resolved laser-saturated fluorescence (LSF), linear laser-induced fluorescence (LIF), and planar laser-induced fluorescence (PLIF) measurements of nitric oxide (NO) concentration in a preheated, lean direct-injection spray flame at atmospheric pressure. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane, and the overall equivalence ratio is unity. NO is excited by means of the Q 2(26.5) transition of the γ(0, 0) band. LSF and LIF detection are performed in a 2-nm region centered on the γ(0, 1) band. PLIF detection is performed in a broad ∼70-nm region with a peak transmission at 270 nm. Quantitative radial NO profiles obtained by LSF are presented and analyzed so as to correct similar LIF and PLIF profiles. Excellent agreement is achieved among the three fluorescence methodologies.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Allen, R. K. Hanson, “Planar laser-induced-fluorescence monitoring of OH in a spray flame,” Opt. Eng. 25, 1309–1311 (1986).
    [CrossRef]
  2. M. G. Allen, R. K. Hanson, “Digital imaging of species concentration fields in spray flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1775–1762.
  3. P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
    [CrossRef] [PubMed]
  4. A. Koch, A. Chryssostomou, P. Andresen, W. Bornsheuer, “Multi-species detection in spray flames with tunable excimer lasers,” J. Appl. Phys. B 56, 165–176 (1993).
    [CrossRef]
  5. M. G. Allen, K. R. McManus, D. M. Sonnenfroh, “PLIF imaging measurements in high-pressure spray flame combustion,” AIAA paper 94-2913, presented at the 30th Joint Propulsion Conference, June 1994 (American Institute of Aeronautics and Astronautics, New York, 1994).
  6. M. G. Allen, K. R. McManus, D. M. Sonnenfroh, P. H. Paul, “Planar laser-induced-fluorescence imaging measurements of OH and hydrocarbon fuel fragments in high-pressure spray-flame combustion,” Appl. Opt. 34, 6287–6300 (1995).
    [CrossRef] [PubMed]
  7. B. S. Haynes, “Soot and hydrocarbons in combustion,” in Fossil Fuel Combustion, W. Bartok, A. Sarofim, eds. (Wiley, New York, 1991), pp. 289–326.
  8. F. W. Lam, J. P. Longwell, J. B. Howard, “The effect of ethylene and benzene addition on the formation of polycyclic aromatic hydrocarbons and soot in a jet-stirred/plug-flow combustor,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1477–1484.
  9. J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1966).
  10. F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
    [CrossRef]
  11. B. L. Upschulte, M. G. Allen, K. R. McManus, “Fluorescence imaging of NO and O2 in a spray flame combustor at elevated pressures,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2779–2786.
    [CrossRef]
  12. R. J. Locke, Y. R. Hicks, R. C. Anderson, K. A. Ockunzzi, G. L. North, “Two-dimensional imaging of OH in a lean burning high pressure combustor,” AIAA paper 95-0173, presented at the 33rd Aerospace Sciences Meeting & Exhibit, January 1995 (American Institute of Aeronautics and Astronautics, New York, 1995).
  13. A. Cessou, D. Stepowski, “Planar laser induced fluorescence measurements of [OH] in the stabilization stage of a spray jet flame,” Combust. Sci. Technol. 118, 361–381 (1996).
    [CrossRef]
  14. D. Stepowski, A. Garo, “Local absolute OH concentration measurement in a diffusion flame by laser induced fluorescence,” Appl. Opt. 24, 2478–2480 (1985).
    [CrossRef] [PubMed]
  15. W. P. Partridge, “Experimental assessment and enhancement of planar laser-induced fluorescence measurements of nitric oxide in an inverse diffusion flame,” Ph.D. dissertation (Purdue University, West Lafayette, Ind., 1996).
  16. C. S. Cooper, N. M. Laurendeau, “Quantitative laser-saturated fluorescence measurements of nitric oxide in a heptane spray flame,” Combust. Sci. Technol. 127, 363–382 (1997).
    [CrossRef]
  17. J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
    [CrossRef]
  18. W. P. Partridge, N. M. Laurendeau, C. C. Johnson, R. N. Steppel, “Performance of Pyrromethene 580 and 597 in a commercial Nd:YAG-pumped dye-laser system,” Opt. Lett. 19, 1630–1632 (1994).
    [CrossRef] [PubMed]
  19. C. S. Cooper, N. M. Laurendeau, “Effect of pulsed dye-laser wavelength stabilization on spectral overlap in atmospheric NO fluorescence studies,” Appl. Opt. 36, 5262–5265 (1997).
    [CrossRef] [PubMed]
  20. C. D. Carter, G. B. King, N. M. Laurendeau, “Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C2H6/O2/N2 flames,” Appl. Opt. 31, 1511–1522 (1992).
    [CrossRef] [PubMed]
  21. W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 35, 4890–4904 (1996).
    [CrossRef] [PubMed]
  22. K. Lee, B. Chehroudi, “Structure of a swirl-stabilized spray flame relevant to gas turbines and furnaces,” J. Propul. Power 11, 1110–1117 (1995).
    [CrossRef]
  23. C. S. Cooper, “Quantitative laser-induced fluorescence measurements of NO concentration in a lean direct-injection spray flame at atmospheric pressure,” M.S. thesis (Purdue University, West Lafayette, Ind., 1997).
  24. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Balanced cross-rate model for saturated molecular fluorescence in flames using a nanosecond pulse length laser,” Appl. Opt. 19, 3295–3300 (1980).
    [CrossRef] [PubMed]
  25. W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
    [CrossRef]
  26. J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
    [CrossRef]
  27. D. D. Thomsen, Purdue University, West Lafayette, Ind. 47907–1288 (personal communication, 1997).
  28. C. D. Carter, N. M. Laurendeau, “Wide- and narrow-band saturated fluorescence measurements of hydroxyl concentration in premixed flames from 1 bat to 10 bar,” Appl. Phys. B 58, 519–528 (1994).
    [CrossRef]
  29. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurement of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
    [CrossRef]
  30. D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997).
    [CrossRef] [PubMed]

1997 (3)

1996 (2)

1995 (2)

1994 (3)

W. P. Partridge, N. M. Laurendeau, C. C. Johnson, R. N. Steppel, “Performance of Pyrromethene 580 and 597 in a commercial Nd:YAG-pumped dye-laser system,” Opt. Lett. 19, 1630–1632 (1994).
[CrossRef] [PubMed]

C. D. Carter, N. M. Laurendeau, “Wide- and narrow-band saturated fluorescence measurements of hydroxyl concentration in premixed flames from 1 bat to 10 bar,” Appl. Phys. B 58, 519–528 (1994).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurement of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

1993 (2)

A. Koch, A. Chryssostomou, P. Andresen, W. Bornsheuer, “Multi-species detection in spray flames with tunable excimer lasers,” J. Appl. Phys. B 56, 165–176 (1993).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

1992 (2)

C. D. Carter, G. B. King, N. M. Laurendeau, “Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C2H6/O2/N2 flames,” Appl. Opt. 31, 1511–1522 (1992).
[CrossRef] [PubMed]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

1990 (1)

1986 (1)

M. G. Allen, R. K. Hanson, “Planar laser-induced-fluorescence monitoring of OH in a spray flame,” Opt. Eng. 25, 1309–1311 (1986).
[CrossRef]

1985 (2)

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

D. Stepowski, A. Garo, “Local absolute OH concentration measurement in a diffusion flame by laser induced fluorescence,” Appl. Opt. 24, 2478–2480 (1985).
[CrossRef] [PubMed]

1982 (1)

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

1980 (1)

Allen, M. G.

M. G. Allen, K. R. McManus, D. M. Sonnenfroh, P. H. Paul, “Planar laser-induced-fluorescence imaging measurements of OH and hydrocarbon fuel fragments in high-pressure spray-flame combustion,” Appl. Opt. 34, 6287–6300 (1995).
[CrossRef] [PubMed]

M. G. Allen, R. K. Hanson, “Planar laser-induced-fluorescence monitoring of OH in a spray flame,” Opt. Eng. 25, 1309–1311 (1986).
[CrossRef]

M. G. Allen, R. K. Hanson, “Digital imaging of species concentration fields in spray flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1775–1762.

M. G. Allen, K. R. McManus, D. M. Sonnenfroh, “PLIF imaging measurements in high-pressure spray flame combustion,” AIAA paper 94-2913, presented at the 30th Joint Propulsion Conference, June 1994 (American Institute of Aeronautics and Astronautics, New York, 1994).

B. L. Upschulte, M. G. Allen, K. R. McManus, “Fluorescence imaging of NO and O2 in a spray flame combustor at elevated pressures,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2779–2786.
[CrossRef]

Anderson, R. C.

R. J. Locke, Y. R. Hicks, R. C. Anderson, K. A. Ockunzzi, G. L. North, “Two-dimensional imaging of OH in a lean burning high pressure combustor,” AIAA paper 95-0173, presented at the 33rd Aerospace Sciences Meeting & Exhibit, January 1995 (American Institute of Aeronautics and Astronautics, New York, 1995).

Andresen, P.

A. Koch, A. Chryssostomou, P. Andresen, W. Bornsheuer, “Multi-species detection in spray flames with tunable excimer lasers,” J. Appl. Phys. B 56, 165–176 (1993).
[CrossRef]

P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

Beretta, F.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

Bornsheuer, W.

A. Koch, A. Chryssostomou, P. Andresen, W. Bornsheuer, “Multi-species detection in spray flames with tunable excimer lasers,” J. Appl. Phys. B 56, 165–176 (1993).
[CrossRef]

Calvert, J. G.

J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1966).

Carter, C. D.

C. D. Carter, N. M. Laurendeau, “Wide- and narrow-band saturated fluorescence measurements of hydroxyl concentration in premixed flames from 1 bat to 10 bar,” Appl. Phys. B 58, 519–528 (1994).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

C. D. Carter, G. B. King, N. M. Laurendeau, “Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C2H6/O2/N2 flames,” Appl. Opt. 31, 1511–1522 (1992).
[CrossRef] [PubMed]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Cessou, A.

A. Cessou, D. Stepowski, “Planar laser induced fluorescence measurements of [OH] in the stabilization stage of a spray jet flame,” Combust. Sci. Technol. 118, 361–381 (1996).
[CrossRef]

Chehroudi, B.

K. Lee, B. Chehroudi, “Structure of a swirl-stabilized spray flame relevant to gas turbines and furnaces,” J. Propul. Power 11, 1110–1117 (1995).
[CrossRef]

Chryssostomou, A.

A. Koch, A. Chryssostomou, P. Andresen, W. Bornsheuer, “Multi-species detection in spray flames with tunable excimer lasers,” J. Appl. Phys. B 56, 165–176 (1993).
[CrossRef]

Cincotti, V.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

Cooper, C. S.

C. S. Cooper, N. M. Laurendeau, “Quantitative laser-saturated fluorescence measurements of nitric oxide in a heptane spray flame,” Combust. Sci. Technol. 127, 363–382 (1997).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Effect of pulsed dye-laser wavelength stabilization on spectral overlap in atmospheric NO fluorescence studies,” Appl. Opt. 36, 5262–5265 (1997).
[CrossRef] [PubMed]

C. S. Cooper, “Quantitative laser-induced fluorescence measurements of NO concentration in a lean direct-injection spray flame at atmospheric pressure,” M.S. thesis (Purdue University, West Lafayette, Ind., 1997).

D’Alessio, A.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

Durant, J. L.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurement of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

Garo, A.

Gray, J. A.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurement of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

Hanson, R. K.

M. G. Allen, R. K. Hanson, “Planar laser-induced-fluorescence monitoring of OH in a spray flame,” Opt. Eng. 25, 1309–1311 (1986).
[CrossRef]

M. G. Allen, R. K. Hanson, “Digital imaging of species concentration fields in spray flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1775–1762.

Haynes, B. S.

B. S. Haynes, “Soot and hydrocarbons in combustion,” in Fossil Fuel Combustion, W. Bartok, A. Sarofim, eds. (Wiley, New York, 1991), pp. 289–326.

Hentschel, W.

Hicks, Y. R.

R. J. Locke, Y. R. Hicks, R. C. Anderson, K. A. Ockunzzi, G. L. North, “Two-dimensional imaging of OH in a lean burning high pressure combustor,” AIAA paper 95-0173, presented at the 33rd Aerospace Sciences Meeting & Exhibit, January 1995 (American Institute of Aeronautics and Astronautics, New York, 1995).

Howard, J. B.

F. W. Lam, J. P. Longwell, J. B. Howard, “The effect of ethylene and benzene addition on the formation of polycyclic aromatic hydrocarbons and soot in a jet-stirred/plug-flow combustor,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1477–1484.

Johnson, C. C.

King, G. B.

Klassen, M. S.

Koch, A.

A. Koch, A. Chryssostomou, P. Andresen, W. Bornsheuer, “Multi-species detection in spray flames with tunable excimer lasers,” J. Appl. Phys. B 56, 165–176 (1993).
[CrossRef]

P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

Kuligowski, F. F.

Lam, F. W.

F. W. Lam, J. P. Longwell, J. B. Howard, “The effect of ethylene and benzene addition on the formation of polycyclic aromatic hydrocarbons and soot in a jet-stirred/plug-flow combustor,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1477–1484.

Laurendeau, N. M.

C. S. Cooper, N. M. Laurendeau, “Effect of pulsed dye-laser wavelength stabilization on spectral overlap in atmospheric NO fluorescence studies,” Appl. Opt. 36, 5262–5265 (1997).
[CrossRef] [PubMed]

C. S. Cooper, N. M. Laurendeau, “Quantitative laser-saturated fluorescence measurements of nitric oxide in a heptane spray flame,” Combust. Sci. Technol. 127, 363–382 (1997).
[CrossRef]

D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997).
[CrossRef] [PubMed]

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 35, 4890–4904 (1996).
[CrossRef] [PubMed]

C. D. Carter, N. M. Laurendeau, “Wide- and narrow-band saturated fluorescence measurements of hydroxyl concentration in premixed flames from 1 bat to 10 bar,” Appl. Phys. B 58, 519–528 (1994).
[CrossRef]

W. P. Partridge, N. M. Laurendeau, C. C. Johnson, R. N. Steppel, “Performance of Pyrromethene 580 and 597 in a commercial Nd:YAG-pumped dye-laser system,” Opt. Lett. 19, 1630–1632 (1994).
[CrossRef] [PubMed]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

C. D. Carter, G. B. King, N. M. Laurendeau, “Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C2H6/O2/N2 flames,” Appl. Opt. 31, 1511–1522 (1992).
[CrossRef] [PubMed]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Balanced cross-rate model for saturated molecular fluorescence in flames using a nanosecond pulse length laser,” Appl. Opt. 19, 3295–3300 (1980).
[CrossRef] [PubMed]

Lee, K.

K. Lee, B. Chehroudi, “Structure of a swirl-stabilized spray flame relevant to gas turbines and furnaces,” J. Propul. Power 11, 1110–1117 (1995).
[CrossRef]

Locke, R. J.

R. J. Locke, Y. R. Hicks, R. C. Anderson, K. A. Ockunzzi, G. L. North, “Two-dimensional imaging of OH in a lean burning high pressure combustor,” AIAA paper 95-0173, presented at the 33rd Aerospace Sciences Meeting & Exhibit, January 1995 (American Institute of Aeronautics and Astronautics, New York, 1995).

Longwell, J. P.

F. W. Lam, J. P. Longwell, J. B. Howard, “The effect of ethylene and benzene addition on the formation of polycyclic aromatic hydrocarbons and soot in a jet-stirred/plug-flow combustor,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1477–1484.

Lucht, R. P.

Mallard, W. G.

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

McManus, K. R.

M. G. Allen, K. R. McManus, D. M. Sonnenfroh, P. H. Paul, “Planar laser-induced-fluorescence imaging measurements of OH and hydrocarbon fuel fragments in high-pressure spray-flame combustion,” Appl. Opt. 34, 6287–6300 (1995).
[CrossRef] [PubMed]

B. L. Upschulte, M. G. Allen, K. R. McManus, “Fluorescence imaging of NO and O2 in a spray flame combustor at elevated pressures,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2779–2786.
[CrossRef]

M. G. Allen, K. R. McManus, D. M. Sonnenfroh, “PLIF imaging measurements in high-pressure spray flame combustion,” AIAA paper 94-2913, presented at the 30th Joint Propulsion Conference, June 1994 (American Institute of Aeronautics and Astronautics, New York, 1994).

Meijer, G.

Menna, P.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

Miller, J. H.

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

North, G. L.

R. J. Locke, Y. R. Hicks, R. C. Anderson, K. A. Ockunzzi, G. L. North, “Two-dimensional imaging of OH in a lean burning high pressure combustor,” AIAA paper 95-0173, presented at the 33rd Aerospace Sciences Meeting & Exhibit, January 1995 (American Institute of Aeronautics and Astronautics, New York, 1995).

Ockunzzi, K. A.

R. J. Locke, Y. R. Hicks, R. C. Anderson, K. A. Ockunzzi, G. L. North, “Two-dimensional imaging of OH in a lean burning high pressure combustor,” AIAA paper 95-0173, presented at the 33rd Aerospace Sciences Meeting & Exhibit, January 1995 (American Institute of Aeronautics and Astronautics, New York, 1995).

Oppermann, W.

Partridge, W. P.

Paul, P. H.

M. G. Allen, K. R. McManus, D. M. Sonnenfroh, P. H. Paul, “Planar laser-induced-fluorescence imaging measurements of OH and hydrocarbon fuel fragments in high-pressure spray-flame combustion,” Appl. Opt. 34, 6287–6300 (1995).
[CrossRef] [PubMed]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurement of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

Pitts, J. N.

J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1966).

Reisel, J. R.

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Rothe, E.

Schlüter, H.

Smyth, K. C.

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

Sonnenfroh, D. M.

M. G. Allen, K. R. McManus, D. M. Sonnenfroh, P. H. Paul, “Planar laser-induced-fluorescence imaging measurements of OH and hydrocarbon fuel fragments in high-pressure spray-flame combustion,” Appl. Opt. 34, 6287–6300 (1995).
[CrossRef] [PubMed]

M. G. Allen, K. R. McManus, D. M. Sonnenfroh, “PLIF imaging measurements in high-pressure spray flame combustion,” AIAA paper 94-2913, presented at the 30th Joint Propulsion Conference, June 1994 (American Institute of Aeronautics and Astronautics, New York, 1994).

Stepowski, D.

A. Cessou, D. Stepowski, “Planar laser induced fluorescence measurements of [OH] in the stabilization stage of a spray jet flame,” Combust. Sci. Technol. 118, 361–381 (1996).
[CrossRef]

D. Stepowski, A. Garo, “Local absolute OH concentration measurement in a diffusion flame by laser induced fluorescence,” Appl. Opt. 24, 2478–2480 (1985).
[CrossRef] [PubMed]

Steppel, R. N.

Sweeney, D. W.

Thoman, J. W.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurement of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

Thomsen, D. D.

Upschulte, B. L.

B. L. Upschulte, M. G. Allen, K. R. McManus, “Fluorescence imaging of NO and O2 in a spray flame combustor at elevated pressures,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2779–2786.
[CrossRef]

Voges, H.

AIAA J. (1)

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurement of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

Appl. Opt. (8)

D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997).
[CrossRef] [PubMed]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Balanced cross-rate model for saturated molecular fluorescence in flames using a nanosecond pulse length laser,” Appl. Opt. 19, 3295–3300 (1980).
[CrossRef] [PubMed]

P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

M. G. Allen, K. R. McManus, D. M. Sonnenfroh, P. H. Paul, “Planar laser-induced-fluorescence imaging measurements of OH and hydrocarbon fuel fragments in high-pressure spray-flame combustion,” Appl. Opt. 34, 6287–6300 (1995).
[CrossRef] [PubMed]

D. Stepowski, A. Garo, “Local absolute OH concentration measurement in a diffusion flame by laser induced fluorescence,” Appl. Opt. 24, 2478–2480 (1985).
[CrossRef] [PubMed]

C. S. Cooper, N. M. Laurendeau, “Effect of pulsed dye-laser wavelength stabilization on spectral overlap in atmospheric NO fluorescence studies,” Appl. Opt. 36, 5262–5265 (1997).
[CrossRef] [PubMed]

C. D. Carter, G. B. King, N. M. Laurendeau, “Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C2H6/O2/N2 flames,” Appl. Opt. 31, 1511–1522 (1992).
[CrossRef] [PubMed]

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 35, 4890–4904 (1996).
[CrossRef] [PubMed]

Appl. Phys. B (1)

C. D. Carter, N. M. Laurendeau, “Wide- and narrow-band saturated fluorescence measurements of hydroxyl concentration in premixed flames from 1 bat to 10 bar,” Appl. Phys. B 58, 519–528 (1994).
[CrossRef]

Combust. Flame (1)

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

Combust. Sci. Technol. (3)

A. Cessou, D. Stepowski, “Planar laser induced fluorescence measurements of [OH] in the stabilization stage of a spray jet flame,” Combust. Sci. Technol. 118, 361–381 (1996).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Quantitative laser-saturated fluorescence measurements of nitric oxide in a heptane spray flame,” Combust. Sci. Technol. 127, 363–382 (1997).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

J. Appl. Phys. B (1)

A. Koch, A. Chryssostomou, P. Andresen, W. Bornsheuer, “Multi-species detection in spray flames with tunable excimer lasers,” J. Appl. Phys. B 56, 165–176 (1993).
[CrossRef]

J. Chem. Phys. (1)

W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982).
[CrossRef]

J. Propul. Power (1)

K. Lee, B. Chehroudi, “Structure of a swirl-stabilized spray flame relevant to gas turbines and furnaces,” J. Propul. Power 11, 1110–1117 (1995).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Opt. Eng. (1)

M. G. Allen, R. K. Hanson, “Planar laser-induced-fluorescence monitoring of OH in a spray flame,” Opt. Eng. 25, 1309–1311 (1986).
[CrossRef]

Opt. Lett. (1)

Other (10)

D. D. Thomsen, Purdue University, West Lafayette, Ind. 47907–1288 (personal communication, 1997).

M. G. Allen, R. K. Hanson, “Digital imaging of species concentration fields in spray flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1775–1762.

M. G. Allen, K. R. McManus, D. M. Sonnenfroh, “PLIF imaging measurements in high-pressure spray flame combustion,” AIAA paper 94-2913, presented at the 30th Joint Propulsion Conference, June 1994 (American Institute of Aeronautics and Astronautics, New York, 1994).

B. S. Haynes, “Soot and hydrocarbons in combustion,” in Fossil Fuel Combustion, W. Bartok, A. Sarofim, eds. (Wiley, New York, 1991), pp. 289–326.

F. W. Lam, J. P. Longwell, J. B. Howard, “The effect of ethylene and benzene addition on the formation of polycyclic aromatic hydrocarbons and soot in a jet-stirred/plug-flow combustor,” in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1477–1484.

J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1966).

C. S. Cooper, “Quantitative laser-induced fluorescence measurements of NO concentration in a lean direct-injection spray flame at atmospheric pressure,” M.S. thesis (Purdue University, West Lafayette, Ind., 1997).

B. L. Upschulte, M. G. Allen, K. R. McManus, “Fluorescence imaging of NO and O2 in a spray flame combustor at elevated pressures,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2779–2786.
[CrossRef]

R. J. Locke, Y. R. Hicks, R. C. Anderson, K. A. Ockunzzi, G. L. North, “Two-dimensional imaging of OH in a lean burning high pressure combustor,” AIAA paper 95-0173, presented at the 33rd Aerospace Sciences Meeting & Exhibit, January 1995 (American Institute of Aeronautics and Astronautics, New York, 1995).

W. P. Partridge, “Experimental assessment and enhancement of planar laser-induced fluorescence measurements of nitric oxide in an inverse diffusion flame,” Ph.D. dissertation (Purdue University, West Lafayette, Ind., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cutaway drawing of the LDI burner. The burner is constructed of stainless steel with a fuel tube entering coaxially at the bottom of the burner and air entering perpendicular to the axis. The air is passed through packed glass beads to attain purely vertical flow and then directed through a helical-vane swirler. Fuel is injected immediately after the swirler by use of a small pressure-atomized nozzle.

Fig. 2
Fig. 2

Spectral bandpass for PLIF detection.

Fig. 3
Fig. 3

Normalized fluorescence signal versus normalized laser irradiance for the saturated and linear regimes of the LSF–LIF experiments. The data for the linear regime are independent of those displayed for the saturated regime. The solid curves are curve fits to the data to accent the saturated and linear fluorescence regimes.

Fig. 4
Fig. 4

LSF measurements for the LDI burner under the following operating parameters: (1) fuel = 0.3 g/s, (2) ϕ = 1, (3) d nozzle = 2.54 mm, and (4) T air preheat = 475 K.

Fig. 5
Fig. 5

LIF measurements for the LDI burner under the following operating parameters: (1) fuel = 0.3 g/s, (2) ϕ = 1, (3) d nozzle = 2.54 mm, and (4) T air preheat = 475 K.

Fig. 6
Fig. 6

Comparison of the LSF measurements and the enhanced LIF measurements based on a scaling factor of 0.75. Note the excellent correlation that signifies a uniform electronic quenching rate coefficient.

Fig. 7
Fig. 7

Comparison of the uncorrected LIF measurements and the uncorrected PLIF measurements. The PLIF measurements generally fall within the accuracy bars of the LIF data, emphasizing the utility of the PLIF technique for LDI spray flames. PLIF measurements were limited to ±18 mm owing to the camera field of view.

Fig. 8
Fig. 8

Comparison of the LSF measurements and the enhanced PLIF measurements based on a scaling factor of 0.75.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S PMT , On - line = S NO , On - line + S Mie , On - line .
S Mie , On - line = S Mie , Off - line P Off - line × P On - line .
S NO , On - line = S PMT , On - line 1 - x extinction - S Mie , Off - line × P On - line P Off - line × 1 - x resonant 1 - x extinction .
N T ss = N 1 ° 1 - γ g u g u + g l α sat 1 + 1 Q e / R u , c + R c , u / R u , c ,
S Q e / R u , c = - Q e R u , c Q e R u , c + R c , u R u , c Q e R u , c + R c , u R u , c + 1 .
S NO , LIF = S PMT , On - line P On - line - S Mie , Off - line × 1 - x resonant P Off - line ,
NO LDI , absolute = f B T cal f B T LDI Q e , LDI Q e , cal NO LDI , relative ,

Metrics