Abstract

An experimental system for the study of the morphological and dynamic properties of flame-generated agglomerates by use of both polarized (vertical–vertical polarization orientation) and depolarized (vertical–horizontal polarization orientation) dynamic light scattering (DLS) was developed and tested. The system consists of a flame reactor for generating chainlike agglomerates of Fe2O3 in an Fe(CO)5-seeded CO–O2 diffusion flame and a light-scattering spectrometer for performing polarized and depolarized DLS measurements of the agglomerates’ dynamic properties. It is demonstrated for the first time that one can successfully obtain depolarized DLS correlation functions from a flame environment by combining the results of a series of measurements obtained using a cross-correlation detection system.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
    [CrossRef]
  2. G. Waguespack, “Studies of the morphology and dynamics of flame-generated agglomerates using dynamic light scattering,” Ph.D. dissertation (Louisiana State University, Baton Rouge, Louisiana, 1997).
  3. A. T. Forrester, “Photoelectric mixing as a spectroscopic tool,” J. Opt. Soc. Am. 51, 253–259 (1961).
    [CrossRef]
  4. R. Pecora, “Doppler shifts in light scattering from pure liquids and polymer solutions,” J. Chem. Phys. 40, 1604–1614 (1964).
    [CrossRef]
  5. R. Pecora, “Spectral distribution of light scattered by monodisperse rigid rods,” J. Chem. Phys. 48, 4126–4128 (1968).
    [CrossRef]
  6. G. B. Benedek, “Optical mixing spectroscopy, with applications to problems in physics, chemistry, biology, and engineering,” in Polarization, Matter, and Radiation (Press Universitaires de France, Paris, 1969), pp. 49–84.
  7. E. Jakeman, “Theory of optical spectroscopy by digital autocorrelation of photon-counting fluctuations,” J. Phys. A Gen. Phys. 3, 201–215 (1970).
    [CrossRef]
  8. H. Z. Cummins, H. L. Swinney, “Light beating spectroscopy,” Prog. Opt. 75, 133–200 (1970).
    [CrossRef]
  9. W. Hinds, P. C. Reist, “Aerosol measurement by laser doppler spectroscopy.—I. Theory and experimental results for aerosols homogeneous,” Aerosol Sci. 3, 501–514 (1972).
    [CrossRef]
  10. S. S. Penner, J. M. Bernard, T. Jerskey, “Power spectra observed in laser scattering from moving, polydisperse particle systems in flames.—I. Theory,” Acta Astron. 3, 69–91 (1976).
    [CrossRef]
  11. S. S. Penner, J. M. Bernard, T. Jerskey, “Light scattering from moving, polydisperse particles in flames—II. Preliminary experiments,” Acta Astron. 3, 93–105 (1976).
    [CrossRef]
  12. J. F. Driscoll, D. M. Mann, “Submicron particle size measurements in an acetylene–oxygen flame,” Combust. Sci. Technol. 20, 41–47 (1979).
    [CrossRef]
  13. L. L. Penner, P. H. P. Chang, “Particle sizing in flames,” in Combustion in Reactive Systems, Vol. 76 of Progress in Astronautics and Aeronautics, J. R. Bowen, A. K. Openheim, R. I. Soloukin, eds. (American Institute of Aeronautics and Astronautics, New York, 1981), pp. 1–30.
  14. G. B. King, C. M. Sorensen, T. W. Lester, J. F. Merklin, “Photon correlation spectroscopy used as a particle size diagnostic in sooting flames,” Appl. Opt. 21, 976–978 (1982).
    [CrossRef] [PubMed]
  15. G. B. King, C. M. Sorensen, T. W. Lester, J. F. Merklin, “Direct measurements of aerosol diffusion constants in the intermediate Knudsen regime,” Phys. Rev. Lett. 50, 1125–1128 (1983).
    [CrossRef]
  16. W. L. Flower, “Optical measurements of soot formation in premixed flames,” Combust. Sci. Technol. 33, 17–33 (1983).
    [CrossRef]
  17. S. M. Scrivner, T. W. Taylor, C. M. Sorensen, J. F. Merklin, “Soot particle size distribution measurements in a premixed flame using photon correlation spectroscopy,” Appl. Opt. 25, 291–297 (1986).
    [CrossRef] [PubMed]
  18. T. T. Charalampopoulos, “An automated light scattering system and a method for the in situ measurement of the index of refraction of soot particles,” Rev. Sci. Instrum. 58, 1638–1646 (1987).
    [CrossRef]
  19. T. T. Charalampopoulos, H. Chang, “In situ optical properties of soot particles in the wavelength range from 340 nm to 600 nm,” Combust. Sci. Technol. 59, 401–421 (1988).
    [CrossRef]
  20. K. Ueyama, T. Ono, M. Matsukata, R. Osima, “Application of dynamic light scattering based on a monodisperse model as an in-situ method of measuring ultra-fine particles growing and aggregating in a flame,” J. Chem. Eng. Jpn. 26, 686–691 (1993).
    [CrossRef]
  21. J. Cai, C. M. Sorensen, “Diffusion of fractal aggregates in the free molecular regime,” Phys. Rev. E 50, 3397–3400 (1994).
    [CrossRef]
  22. B. J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley, New York, 1976).
  23. A. Wada, N. Suda, T. Tsuda, K. Soda, “Rotary-diffusion broadening of Rayleigh lines scattered from optically anisotropic macromolecules in solution,” J. Chem. Phys. 50, 31–35 (1969).
    [CrossRef]
  24. A. Wada, K. Soda, T. Tanaka, N. Suda, “Depolarized light mixing for light beating spectroscopy,” Rev. Sci. Instrum. 41, 845–853 (1970).
    [CrossRef]
  25. J. M. Schurr, K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. I. Tobacco mosaic virus,” Biopolym. 12, 1021–1045 (1973).
    [CrossRef]
  26. J. M. Schurr, K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. II. Temperature dependence for DNA,” Biopolym. 12, 1543–1564 (1973).
    [CrossRef]
  27. P. S. Russo, M. J. Saunders, L. M. DeLong, “Zero-angle depolarized light scattering of a colloidal polymer,” Anal. Chim. Acta. 189, 69–87 (1986).
    [CrossRef]
  28. C. R. Crosby, N. C. Ford, F. E. Karasz, K. H. Langley, “Depolarized dynamic light scattering of a rigid macromolecule poly(p-phenylene benzbisthiazole),” J. Chem. Phys. 75, 4298–4306 (1981).
    [CrossRef]
  29. L. M. DeLong, P. S. Russo, “Particle size distribution by zero-angle depolarized light scattering,” in Polymer Characterization: Physical Property, Spectroscopic, and Chromatographic Methods, C. D. Carver, T. Provder, eds. (American Chemical Society, Washington, D.C., 1990).
    [CrossRef]
  30. T. A. King, J. D. G. McAdam, “Translational and rotational diffusion of tobacco mosaic virus from polarized and depolarized light scattering,” Biopolym. 12, 1917–1926 (1973).
    [CrossRef]
  31. S. Michielsen, R. Pecora, “Solution dimensions of the gramicidin dimer by dynamic light scattering,” Biochemistry 20, 6994–6997 (1981).
    [CrossRef] [PubMed]
  32. K. M. Zero, R. Pecora, “Rotational and translational diffusion in semidilute solutions of rigid-rod macromolecules,” Macromolecules 15, 87–93 (1982).
    [CrossRef]
  33. B. E. Dahneke, “Slip correction factors for nonspherical bodies—III. The form of the general law,” J. Aerosol Sci. 4, 163–170 (1973).
    [CrossRef]
  34. N. C. Ford, “Light scattering apparatus,” in Dynamic Light Scattering—Applications of Photon Correlation Spectroscopy, R. Pecora, ed. (Plenum, New York, 1985).
  35. P. F. Perrin, “Mouvement brownien d’un ellipsoide (I). Dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Rad. 5, 497–511 (1934).
    [CrossRef]
  36. P. F. Perrin, “Mouvement brownien d’un ellipsoide (II). Rotation libre et depolarisation des fluorescences translation et diffusion de molecules ellipsoidales,” J. Phys. Rad. 7, 1–11 (1936).
    [CrossRef]
  37. B. E. Dahneke, “Slip correction factors for nonspherical bodies—I. Introduction and continuum flow,” J. Aerosol Sci. 4, 139–145 (1973).
    [CrossRef]
  38. B. E. Dahneke, “Slip correction factors for nonspherical bodies—II. Free molecule flow,” J. Aerosol Sci. 4, 147–161 (1973).
    [CrossRef]
  39. G. Kasper, S.-N. Shon, D. T. Shaw, “Controlled formation of chain aggregates from very small metal oxide particles,” Am. Ind. Hyg. Assoc. J. 41, 288–296 (1980).
    [CrossRef] [PubMed]
  40. Z. Zhang, T. T. Charalampopoulos, “Controlled combustion synthesis of nano-sized iron oxide aggregates,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1851–1858.
    [CrossRef]
  41. Instruction Manual for Model BI-9000AT Digital Correlator (Brookhaven Instruments Corporation, Holtsville, N.Y., 1993).
  42. L. Mandel, “Fluctuations of photon beams: the distribution of the photo-electrons,” Proc. Phys. Soc. London 74, 233–243 (1959).
    [CrossRef]
  43. A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
    [CrossRef]
  44. E. Jakeman, E. J. Oliver, E. R. Pike, “The effects of spatial coherence on intensity fluctuation distributions of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
    [CrossRef]
  45. E. Jakeman, E. R. Pike, S. Swain, “Statistical accuracy in the digital autocorrelation of photon counting fluctuations,” J. Phys. A Gen. Phys. 4, 517–534 (1971).
    [CrossRef]
  46. K. Schätzel, R. Kalström, B. Stampa, J. Ahrens, “Correction of detection-system dead-time effects on photon-correlation functions,” J. Opt. Soc. Am. B 6, 937–947 (1989).
    [CrossRef]
  47. H. C. Burstyn, R. F. Chang, J. V. Sengers, “Nonexponential decay of critical concentration fluctuations in a binary liquid,” Phys. Rev. Lett. 44, 410–413 (1980).
    [CrossRef]
  48. G. D. J. Phillies, “Utility of multidetector methods in quasi-elastic light-scattering spectroscopy,” in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1985), pp. 291–326.
  49. Photomultipliers (Thorn EMI Electron Tubes, Ltd., Rockway, N.J., 1986).
  50. P. S. Russo, Louisiana State University, Baton Rouge, La. 70803 (personal communication, 1996).
  51. S. W. Provencher, “A constrained regularization method for inverting data represented by linear algebraic or integral equations,” Comput. Phys. Commun. 27, 213–227 (1982).
    [CrossRef]
  52. S. W. Provencher, “contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,” Comput. Phys. Commun. 27, 229–242 (1982).
    [CrossRef]
  53. D. E. Koppel, “Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants,” J. Chem. Phys. 57, 4814–4820 (1972).
    [CrossRef]
  54. S. W. Provencher, “contin (version 2) user’s manual,” EMBL Rep. No. DA07 (European Molecular Biology Laboratory, Göttingen, Germany, 1984).

1994 (1)

J. Cai, C. M. Sorensen, “Diffusion of fractal aggregates in the free molecular regime,” Phys. Rev. E 50, 3397–3400 (1994).
[CrossRef]

1993 (1)

K. Ueyama, T. Ono, M. Matsukata, R. Osima, “Application of dynamic light scattering based on a monodisperse model as an in-situ method of measuring ultra-fine particles growing and aggregating in a flame,” J. Chem. Eng. Jpn. 26, 686–691 (1993).
[CrossRef]

1992 (1)

T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
[CrossRef]

1989 (1)

1988 (1)

T. T. Charalampopoulos, H. Chang, “In situ optical properties of soot particles in the wavelength range from 340 nm to 600 nm,” Combust. Sci. Technol. 59, 401–421 (1988).
[CrossRef]

1987 (1)

T. T. Charalampopoulos, “An automated light scattering system and a method for the in situ measurement of the index of refraction of soot particles,” Rev. Sci. Instrum. 58, 1638–1646 (1987).
[CrossRef]

1986 (2)

1983 (2)

G. B. King, C. M. Sorensen, T. W. Lester, J. F. Merklin, “Direct measurements of aerosol diffusion constants in the intermediate Knudsen regime,” Phys. Rev. Lett. 50, 1125–1128 (1983).
[CrossRef]

W. L. Flower, “Optical measurements of soot formation in premixed flames,” Combust. Sci. Technol. 33, 17–33 (1983).
[CrossRef]

1982 (4)

K. M. Zero, R. Pecora, “Rotational and translational diffusion in semidilute solutions of rigid-rod macromolecules,” Macromolecules 15, 87–93 (1982).
[CrossRef]

G. B. King, C. M. Sorensen, T. W. Lester, J. F. Merklin, “Photon correlation spectroscopy used as a particle size diagnostic in sooting flames,” Appl. Opt. 21, 976–978 (1982).
[CrossRef] [PubMed]

S. W. Provencher, “A constrained regularization method for inverting data represented by linear algebraic or integral equations,” Comput. Phys. Commun. 27, 213–227 (1982).
[CrossRef]

S. W. Provencher, “contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,” Comput. Phys. Commun. 27, 229–242 (1982).
[CrossRef]

1981 (2)

C. R. Crosby, N. C. Ford, F. E. Karasz, K. H. Langley, “Depolarized dynamic light scattering of a rigid macromolecule poly(p-phenylene benzbisthiazole),” J. Chem. Phys. 75, 4298–4306 (1981).
[CrossRef]

S. Michielsen, R. Pecora, “Solution dimensions of the gramicidin dimer by dynamic light scattering,” Biochemistry 20, 6994–6997 (1981).
[CrossRef] [PubMed]

1980 (2)

H. C. Burstyn, R. F. Chang, J. V. Sengers, “Nonexponential decay of critical concentration fluctuations in a binary liquid,” Phys. Rev. Lett. 44, 410–413 (1980).
[CrossRef]

G. Kasper, S.-N. Shon, D. T. Shaw, “Controlled formation of chain aggregates from very small metal oxide particles,” Am. Ind. Hyg. Assoc. J. 41, 288–296 (1980).
[CrossRef] [PubMed]

1979 (1)

J. F. Driscoll, D. M. Mann, “Submicron particle size measurements in an acetylene–oxygen flame,” Combust. Sci. Technol. 20, 41–47 (1979).
[CrossRef]

1976 (2)

S. S. Penner, J. M. Bernard, T. Jerskey, “Power spectra observed in laser scattering from moving, polydisperse particle systems in flames.—I. Theory,” Acta Astron. 3, 69–91 (1976).
[CrossRef]

S. S. Penner, J. M. Bernard, T. Jerskey, “Light scattering from moving, polydisperse particles in flames—II. Preliminary experiments,” Acta Astron. 3, 93–105 (1976).
[CrossRef]

1973 (6)

B. E. Dahneke, “Slip correction factors for nonspherical bodies—I. Introduction and continuum flow,” J. Aerosol Sci. 4, 139–145 (1973).
[CrossRef]

B. E. Dahneke, “Slip correction factors for nonspherical bodies—II. Free molecule flow,” J. Aerosol Sci. 4, 147–161 (1973).
[CrossRef]

T. A. King, J. D. G. McAdam, “Translational and rotational diffusion of tobacco mosaic virus from polarized and depolarized light scattering,” Biopolym. 12, 1917–1926 (1973).
[CrossRef]

B. E. Dahneke, “Slip correction factors for nonspherical bodies—III. The form of the general law,” J. Aerosol Sci. 4, 163–170 (1973).
[CrossRef]

J. M. Schurr, K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. I. Tobacco mosaic virus,” Biopolym. 12, 1021–1045 (1973).
[CrossRef]

J. M. Schurr, K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. II. Temperature dependence for DNA,” Biopolym. 12, 1543–1564 (1973).
[CrossRef]

1972 (2)

W. Hinds, P. C. Reist, “Aerosol measurement by laser doppler spectroscopy.—I. Theory and experimental results for aerosols homogeneous,” Aerosol Sci. 3, 501–514 (1972).
[CrossRef]

D. E. Koppel, “Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants,” J. Chem. Phys. 57, 4814–4820 (1972).
[CrossRef]

1971 (1)

E. Jakeman, E. R. Pike, S. Swain, “Statistical accuracy in the digital autocorrelation of photon counting fluctuations,” J. Phys. A Gen. Phys. 4, 517–534 (1971).
[CrossRef]

1970 (4)

E. Jakeman, E. J. Oliver, E. R. Pike, “The effects of spatial coherence on intensity fluctuation distributions of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
[CrossRef]

E. Jakeman, “Theory of optical spectroscopy by digital autocorrelation of photon-counting fluctuations,” J. Phys. A Gen. Phys. 3, 201–215 (1970).
[CrossRef]

H. Z. Cummins, H. L. Swinney, “Light beating spectroscopy,” Prog. Opt. 75, 133–200 (1970).
[CrossRef]

A. Wada, K. Soda, T. Tanaka, N. Suda, “Depolarized light mixing for light beating spectroscopy,” Rev. Sci. Instrum. 41, 845–853 (1970).
[CrossRef]

1969 (1)

A. Wada, N. Suda, T. Tsuda, K. Soda, “Rotary-diffusion broadening of Rayleigh lines scattered from optically anisotropic macromolecules in solution,” J. Chem. Phys. 50, 31–35 (1969).
[CrossRef]

1968 (1)

R. Pecora, “Spectral distribution of light scattered by monodisperse rigid rods,” J. Chem. Phys. 48, 4126–4128 (1968).
[CrossRef]

1964 (1)

R. Pecora, “Doppler shifts in light scattering from pure liquids and polymer solutions,” J. Chem. Phys. 40, 1604–1614 (1964).
[CrossRef]

1961 (1)

1959 (1)

L. Mandel, “Fluctuations of photon beams: the distribution of the photo-electrons,” Proc. Phys. Soc. London 74, 233–243 (1959).
[CrossRef]

1955 (1)

A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
[CrossRef]

1936 (1)

P. F. Perrin, “Mouvement brownien d’un ellipsoide (II). Rotation libre et depolarisation des fluorescences translation et diffusion de molecules ellipsoidales,” J. Phys. Rad. 7, 1–11 (1936).
[CrossRef]

1934 (1)

P. F. Perrin, “Mouvement brownien d’un ellipsoide (I). Dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Rad. 5, 497–511 (1934).
[CrossRef]

Ahrens, J.

Benedek, G. B.

G. B. Benedek, “Optical mixing spectroscopy, with applications to problems in physics, chemistry, biology, and engineering,” in Polarization, Matter, and Radiation (Press Universitaires de France, Paris, 1969), pp. 49–84.

Bernard, J. M.

S. S. Penner, J. M. Bernard, T. Jerskey, “Power spectra observed in laser scattering from moving, polydisperse particle systems in flames.—I. Theory,” Acta Astron. 3, 69–91 (1976).
[CrossRef]

S. S. Penner, J. M. Bernard, T. Jerskey, “Light scattering from moving, polydisperse particles in flames—II. Preliminary experiments,” Acta Astron. 3, 93–105 (1976).
[CrossRef]

Berne, B. J.

B. J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley, New York, 1976).

Burstyn, H. C.

H. C. Burstyn, R. F. Chang, J. V. Sengers, “Nonexponential decay of critical concentration fluctuations in a binary liquid,” Phys. Rev. Lett. 44, 410–413 (1980).
[CrossRef]

Cai, J.

J. Cai, C. M. Sorensen, “Diffusion of fractal aggregates in the free molecular regime,” Phys. Rev. E 50, 3397–3400 (1994).
[CrossRef]

Chang, H.

T. T. Charalampopoulos, H. Chang, “In situ optical properties of soot particles in the wavelength range from 340 nm to 600 nm,” Combust. Sci. Technol. 59, 401–421 (1988).
[CrossRef]

Chang, P. H. P.

L. L. Penner, P. H. P. Chang, “Particle sizing in flames,” in Combustion in Reactive Systems, Vol. 76 of Progress in Astronautics and Aeronautics, J. R. Bowen, A. K. Openheim, R. I. Soloukin, eds. (American Institute of Aeronautics and Astronautics, New York, 1981), pp. 1–30.

Chang, R. F.

H. C. Burstyn, R. F. Chang, J. V. Sengers, “Nonexponential decay of critical concentration fluctuations in a binary liquid,” Phys. Rev. Lett. 44, 410–413 (1980).
[CrossRef]

Charalampopoulos, T. T.

T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
[CrossRef]

T. T. Charalampopoulos, H. Chang, “In situ optical properties of soot particles in the wavelength range from 340 nm to 600 nm,” Combust. Sci. Technol. 59, 401–421 (1988).
[CrossRef]

T. T. Charalampopoulos, “An automated light scattering system and a method for the in situ measurement of the index of refraction of soot particles,” Rev. Sci. Instrum. 58, 1638–1646 (1987).
[CrossRef]

Z. Zhang, T. T. Charalampopoulos, “Controlled combustion synthesis of nano-sized iron oxide aggregates,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1851–1858.
[CrossRef]

Crosby, C. R.

C. R. Crosby, N. C. Ford, F. E. Karasz, K. H. Langley, “Depolarized dynamic light scattering of a rigid macromolecule poly(p-phenylene benzbisthiazole),” J. Chem. Phys. 75, 4298–4306 (1981).
[CrossRef]

Cummins, H. Z.

H. Z. Cummins, H. L. Swinney, “Light beating spectroscopy,” Prog. Opt. 75, 133–200 (1970).
[CrossRef]

Dahneke, B. E.

B. E. Dahneke, “Slip correction factors for nonspherical bodies—III. The form of the general law,” J. Aerosol Sci. 4, 163–170 (1973).
[CrossRef]

B. E. Dahneke, “Slip correction factors for nonspherical bodies—I. Introduction and continuum flow,” J. Aerosol Sci. 4, 139–145 (1973).
[CrossRef]

B. E. Dahneke, “Slip correction factors for nonspherical bodies—II. Free molecule flow,” J. Aerosol Sci. 4, 147–161 (1973).
[CrossRef]

DeLong, L. M.

P. S. Russo, M. J. Saunders, L. M. DeLong, “Zero-angle depolarized light scattering of a colloidal polymer,” Anal. Chim. Acta. 189, 69–87 (1986).
[CrossRef]

L. M. DeLong, P. S. Russo, “Particle size distribution by zero-angle depolarized light scattering,” in Polymer Characterization: Physical Property, Spectroscopic, and Chromatographic Methods, C. D. Carver, T. Provder, eds. (American Chemical Society, Washington, D.C., 1990).
[CrossRef]

Driscoll, J. F.

J. F. Driscoll, D. M. Mann, “Submicron particle size measurements in an acetylene–oxygen flame,” Combust. Sci. Technol. 20, 41–47 (1979).
[CrossRef]

Flower, W. L.

W. L. Flower, “Optical measurements of soot formation in premixed flames,” Combust. Sci. Technol. 33, 17–33 (1983).
[CrossRef]

Ford, N. C.

C. R. Crosby, N. C. Ford, F. E. Karasz, K. H. Langley, “Depolarized dynamic light scattering of a rigid macromolecule poly(p-phenylene benzbisthiazole),” J. Chem. Phys. 75, 4298–4306 (1981).
[CrossRef]

N. C. Ford, “Light scattering apparatus,” in Dynamic Light Scattering—Applications of Photon Correlation Spectroscopy, R. Pecora, ed. (Plenum, New York, 1985).

Forrester, A. T.

A. T. Forrester, “Photoelectric mixing as a spectroscopic tool,” J. Opt. Soc. Am. 51, 253–259 (1961).
[CrossRef]

A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
[CrossRef]

Gudmundsen, R. A.

A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
[CrossRef]

Hinds, W.

W. Hinds, P. C. Reist, “Aerosol measurement by laser doppler spectroscopy.—I. Theory and experimental results for aerosols homogeneous,” Aerosol Sci. 3, 501–514 (1972).
[CrossRef]

Jakeman, E.

E. Jakeman, E. R. Pike, S. Swain, “Statistical accuracy in the digital autocorrelation of photon counting fluctuations,” J. Phys. A Gen. Phys. 4, 517–534 (1971).
[CrossRef]

E. Jakeman, “Theory of optical spectroscopy by digital autocorrelation of photon-counting fluctuations,” J. Phys. A Gen. Phys. 3, 201–215 (1970).
[CrossRef]

E. Jakeman, E. J. Oliver, E. R. Pike, “The effects of spatial coherence on intensity fluctuation distributions of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
[CrossRef]

Jerskey, T.

S. S. Penner, J. M. Bernard, T. Jerskey, “Power spectra observed in laser scattering from moving, polydisperse particle systems in flames.—I. Theory,” Acta Astron. 3, 69–91 (1976).
[CrossRef]

S. S. Penner, J. M. Bernard, T. Jerskey, “Light scattering from moving, polydisperse particles in flames—II. Preliminary experiments,” Acta Astron. 3, 93–105 (1976).
[CrossRef]

Johnson, P. O.

A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
[CrossRef]

Kalström, R.

Karasz, F. E.

C. R. Crosby, N. C. Ford, F. E. Karasz, K. H. Langley, “Depolarized dynamic light scattering of a rigid macromolecule poly(p-phenylene benzbisthiazole),” J. Chem. Phys. 75, 4298–4306 (1981).
[CrossRef]

Kasper, G.

G. Kasper, S.-N. Shon, D. T. Shaw, “Controlled formation of chain aggregates from very small metal oxide particles,” Am. Ind. Hyg. Assoc. J. 41, 288–296 (1980).
[CrossRef] [PubMed]

King, G. B.

G. B. King, C. M. Sorensen, T. W. Lester, J. F. Merklin, “Direct measurements of aerosol diffusion constants in the intermediate Knudsen regime,” Phys. Rev. Lett. 50, 1125–1128 (1983).
[CrossRef]

G. B. King, C. M. Sorensen, T. W. Lester, J. F. Merklin, “Photon correlation spectroscopy used as a particle size diagnostic in sooting flames,” Appl. Opt. 21, 976–978 (1982).
[CrossRef] [PubMed]

King, T. A.

T. A. King, J. D. G. McAdam, “Translational and rotational diffusion of tobacco mosaic virus from polarized and depolarized light scattering,” Biopolym. 12, 1917–1926 (1973).
[CrossRef]

Koppel, D. E.

D. E. Koppel, “Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants,” J. Chem. Phys. 57, 4814–4820 (1972).
[CrossRef]

Langley, K. H.

C. R. Crosby, N. C. Ford, F. E. Karasz, K. H. Langley, “Depolarized dynamic light scattering of a rigid macromolecule poly(p-phenylene benzbisthiazole),” J. Chem. Phys. 75, 4298–4306 (1981).
[CrossRef]

Lester, T. W.

G. B. King, C. M. Sorensen, T. W. Lester, J. F. Merklin, “Direct measurements of aerosol diffusion constants in the intermediate Knudsen regime,” Phys. Rev. Lett. 50, 1125–1128 (1983).
[CrossRef]

G. B. King, C. M. Sorensen, T. W. Lester, J. F. Merklin, “Photon correlation spectroscopy used as a particle size diagnostic in sooting flames,” Appl. Opt. 21, 976–978 (1982).
[CrossRef] [PubMed]

Mandel, L.

L. Mandel, “Fluctuations of photon beams: the distribution of the photo-electrons,” Proc. Phys. Soc. London 74, 233–243 (1959).
[CrossRef]

Mann, D. M.

J. F. Driscoll, D. M. Mann, “Submicron particle size measurements in an acetylene–oxygen flame,” Combust. Sci. Technol. 20, 41–47 (1979).
[CrossRef]

Matsukata, M.

K. Ueyama, T. Ono, M. Matsukata, R. Osima, “Application of dynamic light scattering based on a monodisperse model as an in-situ method of measuring ultra-fine particles growing and aggregating in a flame,” J. Chem. Eng. Jpn. 26, 686–691 (1993).
[CrossRef]

McAdam, J. D. G.

T. A. King, J. D. G. McAdam, “Translational and rotational diffusion of tobacco mosaic virus from polarized and depolarized light scattering,” Biopolym. 12, 1917–1926 (1973).
[CrossRef]

Merklin, J. F.

Michielsen, S.

S. Michielsen, R. Pecora, “Solution dimensions of the gramicidin dimer by dynamic light scattering,” Biochemistry 20, 6994–6997 (1981).
[CrossRef] [PubMed]

Oliver, E. J.

E. Jakeman, E. J. Oliver, E. R. Pike, “The effects of spatial coherence on intensity fluctuation distributions of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
[CrossRef]

Ono, T.

K. Ueyama, T. Ono, M. Matsukata, R. Osima, “Application of dynamic light scattering based on a monodisperse model as an in-situ method of measuring ultra-fine particles growing and aggregating in a flame,” J. Chem. Eng. Jpn. 26, 686–691 (1993).
[CrossRef]

Osima, R.

K. Ueyama, T. Ono, M. Matsukata, R. Osima, “Application of dynamic light scattering based on a monodisperse model as an in-situ method of measuring ultra-fine particles growing and aggregating in a flame,” J. Chem. Eng. Jpn. 26, 686–691 (1993).
[CrossRef]

Pecora, R.

K. M. Zero, R. Pecora, “Rotational and translational diffusion in semidilute solutions of rigid-rod macromolecules,” Macromolecules 15, 87–93 (1982).
[CrossRef]

S. Michielsen, R. Pecora, “Solution dimensions of the gramicidin dimer by dynamic light scattering,” Biochemistry 20, 6994–6997 (1981).
[CrossRef] [PubMed]

R. Pecora, “Spectral distribution of light scattered by monodisperse rigid rods,” J. Chem. Phys. 48, 4126–4128 (1968).
[CrossRef]

R. Pecora, “Doppler shifts in light scattering from pure liquids and polymer solutions,” J. Chem. Phys. 40, 1604–1614 (1964).
[CrossRef]

B. J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley, New York, 1976).

Penner, L. L.

L. L. Penner, P. H. P. Chang, “Particle sizing in flames,” in Combustion in Reactive Systems, Vol. 76 of Progress in Astronautics and Aeronautics, J. R. Bowen, A. K. Openheim, R. I. Soloukin, eds. (American Institute of Aeronautics and Astronautics, New York, 1981), pp. 1–30.

Penner, S. S.

S. S. Penner, J. M. Bernard, T. Jerskey, “Light scattering from moving, polydisperse particles in flames—II. Preliminary experiments,” Acta Astron. 3, 93–105 (1976).
[CrossRef]

S. S. Penner, J. M. Bernard, T. Jerskey, “Power spectra observed in laser scattering from moving, polydisperse particle systems in flames.—I. Theory,” Acta Astron. 3, 69–91 (1976).
[CrossRef]

Perrin, P. F.

P. F. Perrin, “Mouvement brownien d’un ellipsoide (II). Rotation libre et depolarisation des fluorescences translation et diffusion de molecules ellipsoidales,” J. Phys. Rad. 7, 1–11 (1936).
[CrossRef]

P. F. Perrin, “Mouvement brownien d’un ellipsoide (I). Dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Rad. 5, 497–511 (1934).
[CrossRef]

Phillies, G. D. J.

G. D. J. Phillies, “Utility of multidetector methods in quasi-elastic light-scattering spectroscopy,” in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1985), pp. 291–326.

Pike, E. R.

E. Jakeman, E. R. Pike, S. Swain, “Statistical accuracy in the digital autocorrelation of photon counting fluctuations,” J. Phys. A Gen. Phys. 4, 517–534 (1971).
[CrossRef]

E. Jakeman, E. J. Oliver, E. R. Pike, “The effects of spatial coherence on intensity fluctuation distributions of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
[CrossRef]

Provencher, S. W.

S. W. Provencher, “A constrained regularization method for inverting data represented by linear algebraic or integral equations,” Comput. Phys. Commun. 27, 213–227 (1982).
[CrossRef]

S. W. Provencher, “contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,” Comput. Phys. Commun. 27, 229–242 (1982).
[CrossRef]

S. W. Provencher, “contin (version 2) user’s manual,” EMBL Rep. No. DA07 (European Molecular Biology Laboratory, Göttingen, Germany, 1984).

Reist, P. C.

W. Hinds, P. C. Reist, “Aerosol measurement by laser doppler spectroscopy.—I. Theory and experimental results for aerosols homogeneous,” Aerosol Sci. 3, 501–514 (1972).
[CrossRef]

Russo, P. S.

P. S. Russo, M. J. Saunders, L. M. DeLong, “Zero-angle depolarized light scattering of a colloidal polymer,” Anal. Chim. Acta. 189, 69–87 (1986).
[CrossRef]

P. S. Russo, Louisiana State University, Baton Rouge, La. 70803 (personal communication, 1996).

L. M. DeLong, P. S. Russo, “Particle size distribution by zero-angle depolarized light scattering,” in Polymer Characterization: Physical Property, Spectroscopic, and Chromatographic Methods, C. D. Carver, T. Provder, eds. (American Chemical Society, Washington, D.C., 1990).
[CrossRef]

Saunders, M. J.

P. S. Russo, M. J. Saunders, L. M. DeLong, “Zero-angle depolarized light scattering of a colloidal polymer,” Anal. Chim. Acta. 189, 69–87 (1986).
[CrossRef]

Schätzel, K.

Schmitz, K. S.

J. M. Schurr, K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. I. Tobacco mosaic virus,” Biopolym. 12, 1021–1045 (1973).
[CrossRef]

J. M. Schurr, K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. II. Temperature dependence for DNA,” Biopolym. 12, 1543–1564 (1973).
[CrossRef]

Schurr, J. M.

J. M. Schurr, K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. II. Temperature dependence for DNA,” Biopolym. 12, 1543–1564 (1973).
[CrossRef]

J. M. Schurr, K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. I. Tobacco mosaic virus,” Biopolym. 12, 1021–1045 (1973).
[CrossRef]

Scrivner, S. M.

Sengers, J. V.

H. C. Burstyn, R. F. Chang, J. V. Sengers, “Nonexponential decay of critical concentration fluctuations in a binary liquid,” Phys. Rev. Lett. 44, 410–413 (1980).
[CrossRef]

Shaw, D. T.

G. Kasper, S.-N. Shon, D. T. Shaw, “Controlled formation of chain aggregates from very small metal oxide particles,” Am. Ind. Hyg. Assoc. J. 41, 288–296 (1980).
[CrossRef] [PubMed]

Shon, S.-N.

G. Kasper, S.-N. Shon, D. T. Shaw, “Controlled formation of chain aggregates from very small metal oxide particles,” Am. Ind. Hyg. Assoc. J. 41, 288–296 (1980).
[CrossRef] [PubMed]

Soda, K.

A. Wada, K. Soda, T. Tanaka, N. Suda, “Depolarized light mixing for light beating spectroscopy,” Rev. Sci. Instrum. 41, 845–853 (1970).
[CrossRef]

A. Wada, N. Suda, T. Tsuda, K. Soda, “Rotary-diffusion broadening of Rayleigh lines scattered from optically anisotropic macromolecules in solution,” J. Chem. Phys. 50, 31–35 (1969).
[CrossRef]

Sorensen, C. M.

J. Cai, C. M. Sorensen, “Diffusion of fractal aggregates in the free molecular regime,” Phys. Rev. E 50, 3397–3400 (1994).
[CrossRef]

S. M. Scrivner, T. W. Taylor, C. M. Sorensen, J. F. Merklin, “Soot particle size distribution measurements in a premixed flame using photon correlation spectroscopy,” Appl. Opt. 25, 291–297 (1986).
[CrossRef] [PubMed]

G. B. King, C. M. Sorensen, T. W. Lester, J. F. Merklin, “Direct measurements of aerosol diffusion constants in the intermediate Knudsen regime,” Phys. Rev. Lett. 50, 1125–1128 (1983).
[CrossRef]

G. B. King, C. M. Sorensen, T. W. Lester, J. F. Merklin, “Photon correlation spectroscopy used as a particle size diagnostic in sooting flames,” Appl. Opt. 21, 976–978 (1982).
[CrossRef] [PubMed]

Stampa, B.

Suda, N.

A. Wada, K. Soda, T. Tanaka, N. Suda, “Depolarized light mixing for light beating spectroscopy,” Rev. Sci. Instrum. 41, 845–853 (1970).
[CrossRef]

A. Wada, N. Suda, T. Tsuda, K. Soda, “Rotary-diffusion broadening of Rayleigh lines scattered from optically anisotropic macromolecules in solution,” J. Chem. Phys. 50, 31–35 (1969).
[CrossRef]

Swain, S.

E. Jakeman, E. R. Pike, S. Swain, “Statistical accuracy in the digital autocorrelation of photon counting fluctuations,” J. Phys. A Gen. Phys. 4, 517–534 (1971).
[CrossRef]

Swinney, H. L.

H. Z. Cummins, H. L. Swinney, “Light beating spectroscopy,” Prog. Opt. 75, 133–200 (1970).
[CrossRef]

Tanaka, T.

A. Wada, K. Soda, T. Tanaka, N. Suda, “Depolarized light mixing for light beating spectroscopy,” Rev. Sci. Instrum. 41, 845–853 (1970).
[CrossRef]

Taylor, T. W.

Tsuda, T.

A. Wada, N. Suda, T. Tsuda, K. Soda, “Rotary-diffusion broadening of Rayleigh lines scattered from optically anisotropic macromolecules in solution,” J. Chem. Phys. 50, 31–35 (1969).
[CrossRef]

Ueyama, K.

K. Ueyama, T. Ono, M. Matsukata, R. Osima, “Application of dynamic light scattering based on a monodisperse model as an in-situ method of measuring ultra-fine particles growing and aggregating in a flame,” J. Chem. Eng. Jpn. 26, 686–691 (1993).
[CrossRef]

Wada, A.

A. Wada, K. Soda, T. Tanaka, N. Suda, “Depolarized light mixing for light beating spectroscopy,” Rev. Sci. Instrum. 41, 845–853 (1970).
[CrossRef]

A. Wada, N. Suda, T. Tsuda, K. Soda, “Rotary-diffusion broadening of Rayleigh lines scattered from optically anisotropic macromolecules in solution,” J. Chem. Phys. 50, 31–35 (1969).
[CrossRef]

Waguespack, G.

G. Waguespack, “Studies of the morphology and dynamics of flame-generated agglomerates using dynamic light scattering,” Ph.D. dissertation (Louisiana State University, Baton Rouge, Louisiana, 1997).

Zero, K. M.

K. M. Zero, R. Pecora, “Rotational and translational diffusion in semidilute solutions of rigid-rod macromolecules,” Macromolecules 15, 87–93 (1982).
[CrossRef]

Zhang, Z.

Z. Zhang, T. T. Charalampopoulos, “Controlled combustion synthesis of nano-sized iron oxide aggregates,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1851–1858.
[CrossRef]

Acta Astron. (2)

S. S. Penner, J. M. Bernard, T. Jerskey, “Power spectra observed in laser scattering from moving, polydisperse particle systems in flames.—I. Theory,” Acta Astron. 3, 69–91 (1976).
[CrossRef]

S. S. Penner, J. M. Bernard, T. Jerskey, “Light scattering from moving, polydisperse particles in flames—II. Preliminary experiments,” Acta Astron. 3, 93–105 (1976).
[CrossRef]

Aerosol Sci. (1)

W. Hinds, P. C. Reist, “Aerosol measurement by laser doppler spectroscopy.—I. Theory and experimental results for aerosols homogeneous,” Aerosol Sci. 3, 501–514 (1972).
[CrossRef]

Am. Ind. Hyg. Assoc. J. (1)

G. Kasper, S.-N. Shon, D. T. Shaw, “Controlled formation of chain aggregates from very small metal oxide particles,” Am. Ind. Hyg. Assoc. J. 41, 288–296 (1980).
[CrossRef] [PubMed]

Anal. Chim. Acta. (1)

P. S. Russo, M. J. Saunders, L. M. DeLong, “Zero-angle depolarized light scattering of a colloidal polymer,” Anal. Chim. Acta. 189, 69–87 (1986).
[CrossRef]

Appl. Opt. (2)

Biochemistry (1)

S. Michielsen, R. Pecora, “Solution dimensions of the gramicidin dimer by dynamic light scattering,” Biochemistry 20, 6994–6997 (1981).
[CrossRef] [PubMed]

Biopolym. (3)

T. A. King, J. D. G. McAdam, “Translational and rotational diffusion of tobacco mosaic virus from polarized and depolarized light scattering,” Biopolym. 12, 1917–1926 (1973).
[CrossRef]

J. M. Schurr, K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. I. Tobacco mosaic virus,” Biopolym. 12, 1021–1045 (1973).
[CrossRef]

J. M. Schurr, K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. II. Temperature dependence for DNA,” Biopolym. 12, 1543–1564 (1973).
[CrossRef]

Combust. Sci. Technol. (3)

T. T. Charalampopoulos, H. Chang, “In situ optical properties of soot particles in the wavelength range from 340 nm to 600 nm,” Combust. Sci. Technol. 59, 401–421 (1988).
[CrossRef]

J. F. Driscoll, D. M. Mann, “Submicron particle size measurements in an acetylene–oxygen flame,” Combust. Sci. Technol. 20, 41–47 (1979).
[CrossRef]

W. L. Flower, “Optical measurements of soot formation in premixed flames,” Combust. Sci. Technol. 33, 17–33 (1983).
[CrossRef]

Comput. Phys. Commun. (2)

S. W. Provencher, “A constrained regularization method for inverting data represented by linear algebraic or integral equations,” Comput. Phys. Commun. 27, 213–227 (1982).
[CrossRef]

S. W. Provencher, “contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,” Comput. Phys. Commun. 27, 229–242 (1982).
[CrossRef]

J. Aerosol Sci. (3)

B. E. Dahneke, “Slip correction factors for nonspherical bodies—I. Introduction and continuum flow,” J. Aerosol Sci. 4, 139–145 (1973).
[CrossRef]

B. E. Dahneke, “Slip correction factors for nonspherical bodies—II. Free molecule flow,” J. Aerosol Sci. 4, 147–161 (1973).
[CrossRef]

B. E. Dahneke, “Slip correction factors for nonspherical bodies—III. The form of the general law,” J. Aerosol Sci. 4, 163–170 (1973).
[CrossRef]

J. Chem. Eng. Jpn. (1)

K. Ueyama, T. Ono, M. Matsukata, R. Osima, “Application of dynamic light scattering based on a monodisperse model as an in-situ method of measuring ultra-fine particles growing and aggregating in a flame,” J. Chem. Eng. Jpn. 26, 686–691 (1993).
[CrossRef]

J. Chem. Phys. (5)

A. Wada, N. Suda, T. Tsuda, K. Soda, “Rotary-diffusion broadening of Rayleigh lines scattered from optically anisotropic macromolecules in solution,” J. Chem. Phys. 50, 31–35 (1969).
[CrossRef]

C. R. Crosby, N. C. Ford, F. E. Karasz, K. H. Langley, “Depolarized dynamic light scattering of a rigid macromolecule poly(p-phenylene benzbisthiazole),” J. Chem. Phys. 75, 4298–4306 (1981).
[CrossRef]

R. Pecora, “Doppler shifts in light scattering from pure liquids and polymer solutions,” J. Chem. Phys. 40, 1604–1614 (1964).
[CrossRef]

R. Pecora, “Spectral distribution of light scattered by monodisperse rigid rods,” J. Chem. Phys. 48, 4126–4128 (1968).
[CrossRef]

D. E. Koppel, “Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants,” J. Chem. Phys. 57, 4814–4820 (1972).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. A (1)

E. Jakeman, E. J. Oliver, E. R. Pike, “The effects of spatial coherence on intensity fluctuation distributions of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
[CrossRef]

J. Phys. A Gen. Phys. (2)

E. Jakeman, E. R. Pike, S. Swain, “Statistical accuracy in the digital autocorrelation of photon counting fluctuations,” J. Phys. A Gen. Phys. 4, 517–534 (1971).
[CrossRef]

E. Jakeman, “Theory of optical spectroscopy by digital autocorrelation of photon-counting fluctuations,” J. Phys. A Gen. Phys. 3, 201–215 (1970).
[CrossRef]

J. Phys. Rad. (2)

P. F. Perrin, “Mouvement brownien d’un ellipsoide (I). Dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Rad. 5, 497–511 (1934).
[CrossRef]

P. F. Perrin, “Mouvement brownien d’un ellipsoide (II). Rotation libre et depolarisation des fluorescences translation et diffusion de molecules ellipsoidales,” J. Phys. Rad. 7, 1–11 (1936).
[CrossRef]

Macromolecules (1)

K. M. Zero, R. Pecora, “Rotational and translational diffusion in semidilute solutions of rigid-rod macromolecules,” Macromolecules 15, 87–93 (1982).
[CrossRef]

Phys. Rev. (1)

A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
[CrossRef]

Phys. Rev. E (1)

J. Cai, C. M. Sorensen, “Diffusion of fractal aggregates in the free molecular regime,” Phys. Rev. E 50, 3397–3400 (1994).
[CrossRef]

Phys. Rev. Lett. (2)

G. B. King, C. M. Sorensen, T. W. Lester, J. F. Merklin, “Direct measurements of aerosol diffusion constants in the intermediate Knudsen regime,” Phys. Rev. Lett. 50, 1125–1128 (1983).
[CrossRef]

H. C. Burstyn, R. F. Chang, J. V. Sengers, “Nonexponential decay of critical concentration fluctuations in a binary liquid,” Phys. Rev. Lett. 44, 410–413 (1980).
[CrossRef]

Proc. Phys. Soc. London (1)

L. Mandel, “Fluctuations of photon beams: the distribution of the photo-electrons,” Proc. Phys. Soc. London 74, 233–243 (1959).
[CrossRef]

Prog. Energy Combust. Sci. (1)

T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
[CrossRef]

Prog. Opt. (1)

H. Z. Cummins, H. L. Swinney, “Light beating spectroscopy,” Prog. Opt. 75, 133–200 (1970).
[CrossRef]

Rev. Sci. Instrum. (2)

A. Wada, K. Soda, T. Tanaka, N. Suda, “Depolarized light mixing for light beating spectroscopy,” Rev. Sci. Instrum. 41, 845–853 (1970).
[CrossRef]

T. T. Charalampopoulos, “An automated light scattering system and a method for the in situ measurement of the index of refraction of soot particles,” Rev. Sci. Instrum. 58, 1638–1646 (1987).
[CrossRef]

Other (12)

L. M. DeLong, P. S. Russo, “Particle size distribution by zero-angle depolarized light scattering,” in Polymer Characterization: Physical Property, Spectroscopic, and Chromatographic Methods, C. D. Carver, T. Provder, eds. (American Chemical Society, Washington, D.C., 1990).
[CrossRef]

N. C. Ford, “Light scattering apparatus,” in Dynamic Light Scattering—Applications of Photon Correlation Spectroscopy, R. Pecora, ed. (Plenum, New York, 1985).

B. J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley, New York, 1976).

Z. Zhang, T. T. Charalampopoulos, “Controlled combustion synthesis of nano-sized iron oxide aggregates,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1851–1858.
[CrossRef]

Instruction Manual for Model BI-9000AT Digital Correlator (Brookhaven Instruments Corporation, Holtsville, N.Y., 1993).

G. B. Benedek, “Optical mixing spectroscopy, with applications to problems in physics, chemistry, biology, and engineering,” in Polarization, Matter, and Radiation (Press Universitaires de France, Paris, 1969), pp. 49–84.

L. L. Penner, P. H. P. Chang, “Particle sizing in flames,” in Combustion in Reactive Systems, Vol. 76 of Progress in Astronautics and Aeronautics, J. R. Bowen, A. K. Openheim, R. I. Soloukin, eds. (American Institute of Aeronautics and Astronautics, New York, 1981), pp. 1–30.

G. Waguespack, “Studies of the morphology and dynamics of flame-generated agglomerates using dynamic light scattering,” Ph.D. dissertation (Louisiana State University, Baton Rouge, Louisiana, 1997).

G. D. J. Phillies, “Utility of multidetector methods in quasi-elastic light-scattering spectroscopy,” in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1985), pp. 291–326.

Photomultipliers (Thorn EMI Electron Tubes, Ltd., Rockway, N.J., 1986).

P. S. Russo, Louisiana State University, Baton Rouge, La. 70803 (personal communication, 1996).

S. W. Provencher, “contin (version 2) user’s manual,” EMBL Rep. No. DA07 (European Molecular Biology Laboratory, Göttingen, Germany, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Evaporator system.

Fig. 2
Fig. 2

Concentric-tube diffusion burner.

Fig. 3
Fig. 3

Optical measurement system.

Fig. 4
Fig. 4

Two-detector cross-correlation detection system.

Fig. 5
Fig. 5

Normalized single-detector autocorrelation function of photons from a constant-intensity light source.

Fig. 6
Fig. 6

Normalized single-detector autocorrelation function of polarized (VV) light scattered from an Fe(CO)5-seeded CO–room-air diffusion flame (CO flow, 0.50 lpm; carrier CO flow, 20 mlpm; height, 30 mm; stabilizer height, 42 mm).

Fig. 7
Fig. 7

Normalized two-detector cross-correlation function of photons from a constant-intensity light source.

Fig. 8
Fig. 8

Normalized two-detector cross-correlation functions of polarized (VV) and depolarized (VH) light scattered from a Fe(CO)5-seeded CO–O2 diffusion flame (Q CO = 0.35 lpm; Q carr = 8 mlpm; Q O2 = 0.25 lpm; H = 35 mm; h stb = 43 mm; total duration, 30 min.).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G τ j 1 N i = 1 N   n i n i - j   j = 1 ,   2 ,   3 , ,   M ,
A c λ 2 Ω ,
Var   g ˆ 2 τ g 2 τ - 1 2 = g 2 τ n 0 f A 2 N ,
G T τ j = 1 N T s = 1 N c   N s G s τ j ,

Metrics