Abstract

The detection and processing of laser communication signals are affected by the fading induced onto these signals by atmospheric turbulence. One method of reducing this fading is to use an array of detectors in which each of the detector outputs are added together coherently. We present experimental verification and theory of a 1.06 μm eight-element coherent receiver used to mitigate the effects of fading over a 1-km outdoor range. The carrier-to-noise ratio (CNR) was measured on a single channel and was then compared with the CNR obtained from the coherent sum of the eight channels. The increase of the mean CNR for the coherent sum as compared with a single aperture was observed proportional to the number of the apertures under different conditions of atmospheric turbulence. The measured mean CNR gain fitted the theoretical prediction well when the laser intensity fluctuations followed the gamma distribution.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription