Abstract

The Er:YAG laser-induced damage (LID) threshold and modal properties of single-crystal sapphire fibers grown by the laser-heated pedestal-growth method have been measured. The lowest loss (∼0.4-dB/m) sapphire fibers produce little mode mixing and therefore deliver a near-single-mode output profile if the Er:YAG laser input beam profile is also nearly Gaussian. Normally, however, Er:YAG laser output beam profiles are multimode with numerous high-energy spikes. This leads not only to a multimode output from the fiber but also increased fiber loss that is due to higher-order mode coupling. The results of LID testing give a damage fluence of ∼1.4 kJ/cm2 for 300-μm core-only sapphire fibers at 2.94 μm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
    [CrossRef]
  2. R. S. F. Chang, V. Phomsakha, N. Djeu, “Recent advances in sapphire fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 48–53 (1995).
    [CrossRef]
  3. G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 54–59 (1995).
    [CrossRef]
  4. A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of Er:YAG laser energy and IR sensor applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 35–42 (1996).
    [CrossRef]
  5. R. W. Waynant, S. Oshry, M. Fink, “Infrared measurements of sapphire fibers for medical applications,” Appl. Opt. 32, 390–392 (1993).
    [CrossRef] [PubMed]
  6. J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Method for forming refractory fibers by laser energy,” U.S. patent3,944,640 (16March1976).
  7. J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Apparatus for forming refractory fibers,” U.S. patent4,012,213 (15March1977).
  8. M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
    [CrossRef]
  9. R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669–680 (1986).
    [CrossRef]
  10. R. S. F. Chang, “Development of high optical quality high temperature sapphire fibers,” NASA Final Report, NAS1-19508 (NASA Langley Research Center, Hampton, Va., 1994).
  11. G. N. Merberg, “Optical properties of single-crystal sapphire fibers,” Ph.D. dissertation (Rutgers University, Piscataway, N.J., 1992).
  12. J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Erbium:YAG laser energy,” in Biomedical Optics, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1994).
  13. R. K. Nubling, R. L. Kozodoy, J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” in Biomedical Optics, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 56–61 (1994).
  14. R. K. Nubling, J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
    [CrossRef] [PubMed]

1997 (1)

1993 (1)

1989 (1)

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[CrossRef]

1986 (1)

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669–680 (1986).
[CrossRef]

1984 (1)

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

Bates, H. E.

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Erbium:YAG laser energy,” in Biomedical Optics, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1994).

Byer, R. L.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[CrossRef]

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

Chadwick, D.

G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 54–59 (1995).
[CrossRef]

Chang, R. S. F.

R. S. F. Chang, “Development of high optical quality high temperature sapphire fibers,” NASA Final Report, NAS1-19508 (NASA Langley Research Center, Hampton, Va., 1994).

R. S. F. Chang, V. Phomsakha, N. Djeu, “Recent advances in sapphire fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 48–53 (1995).
[CrossRef]

Clarke, G. M.

G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 54–59 (1995).
[CrossRef]

Djeu, N.

R. S. F. Chang, V. Phomsakha, N. Djeu, “Recent advances in sapphire fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 48–53 (1995).
[CrossRef]

Dugan, J. R.

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of Er:YAG laser energy and IR sensor applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 35–42 (1996).
[CrossRef]

Feigelson, R. S.

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669–680 (1986).
[CrossRef]

Fejer, M. M.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[CrossRef]

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

Fink, M.

Fitzgibbon, J. J.

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Erbium:YAG laser energy,” in Biomedical Optics, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1994).

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of Er:YAG laser energy and IR sensor applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 35–42 (1996).
[CrossRef]

Haggerty, J. S.

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Method for forming refractory fibers by laser energy,” U.S. patent3,944,640 (16March1976).

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Apparatus for forming refractory fibers,” U.S. patent4,012,213 (15March1977).

Harrington, J. A.

R. K. Nubling, J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
[CrossRef] [PubMed]

G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 54–59 (1995).
[CrossRef]

R. K. Nubling, R. L. Kozodoy, J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” in Biomedical Optics, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 56–61 (1994).

Jundt, D. H.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[CrossRef]

Kozodoy, R. L.

R. K. Nubling, R. L. Kozodoy, J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” in Biomedical Optics, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 56–61 (1994).

Magel, G. A.

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

Menashi, W. P.

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Method for forming refractory fibers by laser energy,” U.S. patent3,944,640 (16March1976).

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Apparatus for forming refractory fibers,” U.S. patent4,012,213 (15March1977).

Merberg, G. N.

G. N. Merberg, “Optical properties of single-crystal sapphire fibers,” Ph.D. dissertation (Rutgers University, Piscataway, N.J., 1992).

Nightingale, J. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

Nubling, R. K.

R. K. Nubling, J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
[CrossRef] [PubMed]

G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 54–59 (1995).
[CrossRef]

R. K. Nubling, R. L. Kozodoy, J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” in Biomedical Optics, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 56–61 (1994).

Oshry, S.

Philbrick, M. J.

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Erbium:YAG laser energy,” in Biomedical Optics, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1994).

Phomsakha, V.

R. S. F. Chang, V. Phomsakha, N. Djeu, “Recent advances in sapphire fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 48–53 (1995).
[CrossRef]

Pryshlak, A. P.

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Erbium:YAG laser energy,” in Biomedical Optics, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1994).

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of Er:YAG laser energy and IR sensor applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 35–42 (1996).
[CrossRef]

Waynant, R. W.

Wenekus, J. F.

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Method for forming refractory fibers by laser energy,” U.S. patent3,944,640 (16March1976).

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Apparatus for forming refractory fibers,” U.S. patent4,012,213 (15March1977).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[CrossRef]

J. Cryst. Growth (1)

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669–680 (1986).
[CrossRef]

Rev. Sci. Instrum. (1)

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[CrossRef]

Other (9)

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Method for forming refractory fibers by laser energy,” U.S. patent3,944,640 (16March1976).

J. S. Haggerty, W. P. Menashi, J. F. Wenekus, “Apparatus for forming refractory fibers,” U.S. patent4,012,213 (15March1977).

R. S. F. Chang, “Development of high optical quality high temperature sapphire fibers,” NASA Final Report, NAS1-19508 (NASA Langley Research Center, Hampton, Va., 1994).

G. N. Merberg, “Optical properties of single-crystal sapphire fibers,” Ph.D. dissertation (Rutgers University, Piscataway, N.J., 1992).

J. J. Fitzgibbon, H. E. Bates, A. P. Pryshlak, M. J. Philbrick, “Sapphire optical fibers for the delivery of Erbium:YAG laser energy,” in Biomedical Optics, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 50–55 (1994).

R. K. Nubling, R. L. Kozodoy, J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” in Biomedical Optics, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 56–61 (1994).

R. S. F. Chang, V. Phomsakha, N. Djeu, “Recent advances in sapphire fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 48–53 (1995).
[CrossRef]

G. M. Clarke, D. Chadwick, R. K. Nubling, J. A. Harrington, “Sapphire fibers for three micron delivery systems,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 54–59 (1995).
[CrossRef]

A. P. Pryshlak, J. R. Dugan, J. J. Fitzgibbon, “Advancements in sapphire optical fibers for the delivery of Er:YAG laser energy and IR sensor applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 35–42 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Multimode beam profiles of an unapertured Er:YAG laser beam at 100 mW (a) into and (b) exiting a single-crystal sapphire fiber and at 10 W (c) into and (d) exiting the fiber. The total loss of this fiber when measured with the apertured beam was ∼0.4 dB/m.

Fig. 2
Fig. 2

Near-single-mode beam profiles of an Er:YAG laser at 100 mW with a 2-mm aperture placed in the cavity (a) into and (b) exiting a single-crystal sapphire fiber.

Fig. 3
Fig. 3

Cross sections of a 100-mW Er:YAG laser beam (a) into and (b) exiting a single-crystal sapphire fiber, showing the near-Gaussian shape. The dashed curves represent true Gaussian curves with 1/e 2 values of 1.65 mm for the input beam and 0.7 mm for the output beam.

Fig. 4
Fig. 4

Multimode output from a sapphire fiber having higher scattering losses with a near-single-mode Er:YAG laser input beam at 100 mW. The total loss of this fiber when measured with the apertured beam was ∼0.8 dB/m.

Fig. 5
Fig. 5

Transmission through a 300-μm-diameter, 1.08-m-long single-crystal sapphire fiber with and without the input beam apertured. The fiber showed only slight input-end damage after 20 min of continuous use at 10 W.

Fig. 6
Fig. 6

Input-face surface damage to a sapphire fiber from 10-W, 10-Hz Er:YAG laser power.

Metrics