Abstract

We report spatial variability of oceanic phycoerythrin spectral types detected by means of a blue spectral shift in airborne laser-induced fluorescence emission. The blue shift of the phycoerythrobilin fluorescence is known from laboratory studies to be induced by phycourobilin chromophore substitution at phycoerythrobilin chromophore sites in some strains of phycoerythrin-containing marine cyanobacteria. The airborne 532-nm laser-induced phycoerythrin fluorescence of the upper oceanic volume showed distinct segregation of cyanobacterial chromophore types in a flight transect from coastal water to the Sargasso Sea in the western North Atlantic. High phycourobilin levels were restricted to the oceanic (oligotrophic) end of the flight transect, in agreement with historical ship findings. These remotely observed phycoerythrin spectral fluorescence shifts have the potential to permit rapid, wide-area studies of the spatial variability of spectrally distinct cyanobacteria, especially across interfacial regions of coastal and oceanic water masses. Airborne laser-induced phytoplankton spectral fluorescence observations also further the development of satellite algorithms for passive detection of phytoplankton pigments. Optical modifications to the NASA Airborne Oceanographic Lidar are briefly described that permitted observation of the fluorescence spectral shifts.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. E. Hoge, R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981).
    [CrossRef] [PubMed]
  2. F. E. Hoge, R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sensing Environ. 34, 19–25 (1990).
    [CrossRef]
  3. R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry,” Deep-Sea Res. 35, 425–440 (1988).
    [CrossRef]
  4. R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans,” Limnol. Oceanogr. 35, 45–58 (1990).
    [CrossRef]
  5. L. J. Ong, A. N. Glazer, “Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins,” J. Biol. Chem. 266, 9515–9527 (1991).
    [PubMed]
  6. F. E. Hoge, R. N. Swift, J. Y. Yungel, A. Vodacek, “Fluorescence of dissolved organic matter: a comparison of North Pacific and North Atlantic Oceans during April 1991,” J. Geophys. Res. 98, 22,779–22,787 (1993).
    [CrossRef]
  7. F. E. Hoge, R. N. Swift, “The influence of chlorophyll pigment upon upwelling spectral radiances from the North Atlantic Ocean: an active-passive correlation spectroscopy study,” Deep-Sea Res. 40, 265–277 (1993).
    [CrossRef]
  8. F. E. Hoge, R. N. Swift, “Oil film thickness measurement using airborne laser-induced water Raman backscatter,” Appl. Opt. 19, 3269–3281 (1980).
    [CrossRef] [PubMed]
  9. F. E. Hoge, R. N. Swift, E. B. Frederick, “Water depth measurement using an airborne pulsed neon laser system,” Appl. Opt. 19, 871–883 (1980).
    [CrossRef] [PubMed]
  10. F. E. Hoge, R. N. Swift, “Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream warm core ring,” Appl. Opt. 22, 2272–2281 (1983).
    [CrossRef] [PubMed]
  11. F. E. Hoge, R. E. Berry, R. N. Swift, “Active–passive airborne ocean color measurement. 1. Instrumentation,” Appl. Opt. 25, 39–47 (1986).
    [CrossRef] [PubMed]
  12. F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement. 2. Applications,” Appl. Opt. 25, 48–57 (1986).
    [CrossRef] [PubMed]
  13. W. A. Hovis, J. S. Knoll, “Characteristics of an internally illuminated calibration sphere,” Appl. Opt. 22, 4004–4007 (1983).
    [CrossRef] [PubMed]
  14. T. M. Kana, N. L. Feiwel, L. C. Flynn, “Nitrogen starvation in marine Synechococcus strains: clonal differences in phycobiliprotein breakdown and energy coupling,” Marine Ecol. Prog. Ser. 88, 75–82 (1992).
    [CrossRef]
  15. T. M. Kana, P. M. Glibert, “Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803. I. Growth, pigmentation, and cell composition,” Deep-Sea Res. 34, 479–495 (1987).
    [CrossRef]
  16. M. Bristow, D. Nielsen, D. Bundy, F. Furtek, “Use of water-Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt. 20, 2889–2906 (1981).
    [CrossRef] [PubMed]
  17. M. M. Vernet, B. G. Mitchell, O. Holm-Hansen, “Adaptation of Synechococcus in situ determined by variability in intracellular phycoerythrin-543 at a coastal station off the Southern California coast, USA,” Marine Ecol. Prog. Ser. 63, 9–16 (1990).
    [CrossRef]
  18. F. E. Hoge, R. N. Swift, “Active-passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions,” Appl. Opt. 25, 2571–2583 (1986).
    [CrossRef] [PubMed]
  19. F. E. Hoge, R. N. Swift, J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995).
    [CrossRef] [PubMed]
  20. F. E. Hoge, M. E. Williams, R. N. Swift, J. K. Yungel, A. Vodacek, “Satellite retrieval of the absorption coefficient of chromophoric dissolved organic matter in continental margins,” J. Geophys. Res. 100, 24,847–24,854 (1995).
    [CrossRef]

1995 (2)

F. E. Hoge, R. N. Swift, J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995).
[CrossRef] [PubMed]

F. E. Hoge, M. E. Williams, R. N. Swift, J. K. Yungel, A. Vodacek, “Satellite retrieval of the absorption coefficient of chromophoric dissolved organic matter in continental margins,” J. Geophys. Res. 100, 24,847–24,854 (1995).
[CrossRef]

1993 (2)

F. E. Hoge, R. N. Swift, J. Y. Yungel, A. Vodacek, “Fluorescence of dissolved organic matter: a comparison of North Pacific and North Atlantic Oceans during April 1991,” J. Geophys. Res. 98, 22,779–22,787 (1993).
[CrossRef]

F. E. Hoge, R. N. Swift, “The influence of chlorophyll pigment upon upwelling spectral radiances from the North Atlantic Ocean: an active-passive correlation spectroscopy study,” Deep-Sea Res. 40, 265–277 (1993).
[CrossRef]

1992 (1)

T. M. Kana, N. L. Feiwel, L. C. Flynn, “Nitrogen starvation in marine Synechococcus strains: clonal differences in phycobiliprotein breakdown and energy coupling,” Marine Ecol. Prog. Ser. 88, 75–82 (1992).
[CrossRef]

1991 (1)

L. J. Ong, A. N. Glazer, “Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins,” J. Biol. Chem. 266, 9515–9527 (1991).
[PubMed]

1990 (3)

M. M. Vernet, B. G. Mitchell, O. Holm-Hansen, “Adaptation of Synechococcus in situ determined by variability in intracellular phycoerythrin-543 at a coastal station off the Southern California coast, USA,” Marine Ecol. Prog. Ser. 63, 9–16 (1990).
[CrossRef]

F. E. Hoge, R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sensing Environ. 34, 19–25 (1990).
[CrossRef]

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans,” Limnol. Oceanogr. 35, 45–58 (1990).
[CrossRef]

1988 (1)

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry,” Deep-Sea Res. 35, 425–440 (1988).
[CrossRef]

1987 (1)

T. M. Kana, P. M. Glibert, “Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803. I. Growth, pigmentation, and cell composition,” Deep-Sea Res. 34, 479–495 (1987).
[CrossRef]

1986 (3)

1983 (2)

1981 (2)

1980 (2)

Armbrust, E. V.

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans,” Limnol. Oceanogr. 35, 45–58 (1990).
[CrossRef]

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry,” Deep-Sea Res. 35, 425–440 (1988).
[CrossRef]

Berry, R. E.

Bristow, M.

Bundy, D.

Chisholm, S. W.

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans,” Limnol. Oceanogr. 35, 45–58 (1990).
[CrossRef]

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry,” Deep-Sea Res. 35, 425–440 (1988).
[CrossRef]

Feiwel, N. L.

T. M. Kana, N. L. Feiwel, L. C. Flynn, “Nitrogen starvation in marine Synechococcus strains: clonal differences in phycobiliprotein breakdown and energy coupling,” Marine Ecol. Prog. Ser. 88, 75–82 (1992).
[CrossRef]

Flynn, L. C.

T. M. Kana, N. L. Feiwel, L. C. Flynn, “Nitrogen starvation in marine Synechococcus strains: clonal differences in phycobiliprotein breakdown and energy coupling,” Marine Ecol. Prog. Ser. 88, 75–82 (1992).
[CrossRef]

Frederick, E. B.

Furtek, F.

Glazer, A. N.

L. J. Ong, A. N. Glazer, “Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins,” J. Biol. Chem. 266, 9515–9527 (1991).
[PubMed]

Glibert, P. M.

T. M. Kana, P. M. Glibert, “Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803. I. Growth, pigmentation, and cell composition,” Deep-Sea Res. 34, 479–495 (1987).
[CrossRef]

Hoge, F. E.

F. E. Hoge, R. N. Swift, J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995).
[CrossRef] [PubMed]

F. E. Hoge, M. E. Williams, R. N. Swift, J. K. Yungel, A. Vodacek, “Satellite retrieval of the absorption coefficient of chromophoric dissolved organic matter in continental margins,” J. Geophys. Res. 100, 24,847–24,854 (1995).
[CrossRef]

F. E. Hoge, R. N. Swift, J. Y. Yungel, A. Vodacek, “Fluorescence of dissolved organic matter: a comparison of North Pacific and North Atlantic Oceans during April 1991,” J. Geophys. Res. 98, 22,779–22,787 (1993).
[CrossRef]

F. E. Hoge, R. N. Swift, “The influence of chlorophyll pigment upon upwelling spectral radiances from the North Atlantic Ocean: an active-passive correlation spectroscopy study,” Deep-Sea Res. 40, 265–277 (1993).
[CrossRef]

F. E. Hoge, R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sensing Environ. 34, 19–25 (1990).
[CrossRef]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement. 2. Applications,” Appl. Opt. 25, 48–57 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Active-passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions,” Appl. Opt. 25, 2571–2583 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active–passive airborne ocean color measurement. 1. Instrumentation,” Appl. Opt. 25, 39–47 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream warm core ring,” Appl. Opt. 22, 2272–2281 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Oil film thickness measurement using airborne laser-induced water Raman backscatter,” Appl. Opt. 19, 3269–3281 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, E. B. Frederick, “Water depth measurement using an airborne pulsed neon laser system,” Appl. Opt. 19, 871–883 (1980).
[CrossRef] [PubMed]

Holm-Hansen, O.

M. M. Vernet, B. G. Mitchell, O. Holm-Hansen, “Adaptation of Synechococcus in situ determined by variability in intracellular phycoerythrin-543 at a coastal station off the Southern California coast, USA,” Marine Ecol. Prog. Ser. 63, 9–16 (1990).
[CrossRef]

Hovis, W. A.

Kana, T. M.

T. M. Kana, N. L. Feiwel, L. C. Flynn, “Nitrogen starvation in marine Synechococcus strains: clonal differences in phycobiliprotein breakdown and energy coupling,” Marine Ecol. Prog. Ser. 88, 75–82 (1992).
[CrossRef]

T. M. Kana, P. M. Glibert, “Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803. I. Growth, pigmentation, and cell composition,” Deep-Sea Res. 34, 479–495 (1987).
[CrossRef]

Knoll, J. S.

Mitchell, B. G.

M. M. Vernet, B. G. Mitchell, O. Holm-Hansen, “Adaptation of Synechococcus in situ determined by variability in intracellular phycoerythrin-543 at a coastal station off the Southern California coast, USA,” Marine Ecol. Prog. Ser. 63, 9–16 (1990).
[CrossRef]

Nielsen, D.

Olson, R. J.

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans,” Limnol. Oceanogr. 35, 45–58 (1990).
[CrossRef]

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry,” Deep-Sea Res. 35, 425–440 (1988).
[CrossRef]

Ong, L. J.

L. J. Ong, A. N. Glazer, “Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins,” J. Biol. Chem. 266, 9515–9527 (1991).
[PubMed]

Swift, R. N.

F. E. Hoge, R. N. Swift, J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995).
[CrossRef] [PubMed]

F. E. Hoge, M. E. Williams, R. N. Swift, J. K. Yungel, A. Vodacek, “Satellite retrieval of the absorption coefficient of chromophoric dissolved organic matter in continental margins,” J. Geophys. Res. 100, 24,847–24,854 (1995).
[CrossRef]

F. E. Hoge, R. N. Swift, J. Y. Yungel, A. Vodacek, “Fluorescence of dissolved organic matter: a comparison of North Pacific and North Atlantic Oceans during April 1991,” J. Geophys. Res. 98, 22,779–22,787 (1993).
[CrossRef]

F. E. Hoge, R. N. Swift, “The influence of chlorophyll pigment upon upwelling spectral radiances from the North Atlantic Ocean: an active-passive correlation spectroscopy study,” Deep-Sea Res. 40, 265–277 (1993).
[CrossRef]

F. E. Hoge, R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sensing Environ. 34, 19–25 (1990).
[CrossRef]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement. 2. Applications,” Appl. Opt. 25, 48–57 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active–passive airborne ocean color measurement. 1. Instrumentation,” Appl. Opt. 25, 39–47 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Active-passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions,” Appl. Opt. 25, 2571–2583 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream warm core ring,” Appl. Opt. 22, 2272–2281 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, E. B. Frederick, “Water depth measurement using an airborne pulsed neon laser system,” Appl. Opt. 19, 871–883 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Oil film thickness measurement using airborne laser-induced water Raman backscatter,” Appl. Opt. 19, 3269–3281 (1980).
[CrossRef] [PubMed]

Vernet, M. M.

M. M. Vernet, B. G. Mitchell, O. Holm-Hansen, “Adaptation of Synechococcus in situ determined by variability in intracellular phycoerythrin-543 at a coastal station off the Southern California coast, USA,” Marine Ecol. Prog. Ser. 63, 9–16 (1990).
[CrossRef]

Vodacek, A.

F. E. Hoge, M. E. Williams, R. N. Swift, J. K. Yungel, A. Vodacek, “Satellite retrieval of the absorption coefficient of chromophoric dissolved organic matter in continental margins,” J. Geophys. Res. 100, 24,847–24,854 (1995).
[CrossRef]

F. E. Hoge, R. N. Swift, J. Y. Yungel, A. Vodacek, “Fluorescence of dissolved organic matter: a comparison of North Pacific and North Atlantic Oceans during April 1991,” J. Geophys. Res. 98, 22,779–22,787 (1993).
[CrossRef]

Williams, M. E.

F. E. Hoge, M. E. Williams, R. N. Swift, J. K. Yungel, A. Vodacek, “Satellite retrieval of the absorption coefficient of chromophoric dissolved organic matter in continental margins,” J. Geophys. Res. 100, 24,847–24,854 (1995).
[CrossRef]

Yungel, J. K.

Yungel, J. Y.

F. E. Hoge, R. N. Swift, J. Y. Yungel, A. Vodacek, “Fluorescence of dissolved organic matter: a comparison of North Pacific and North Atlantic Oceans during April 1991,” J. Geophys. Res. 98, 22,779–22,787 (1993).
[CrossRef]

Zettler, E. R.

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans,” Limnol. Oceanogr. 35, 45–58 (1990).
[CrossRef]

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry,” Deep-Sea Res. 35, 425–440 (1988).
[CrossRef]

Appl. Opt. (10)

F. E. Hoge, R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Oil film thickness measurement using airborne laser-induced water Raman backscatter,” Appl. Opt. 19, 3269–3281 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, E. B. Frederick, “Water depth measurement using an airborne pulsed neon laser system,” Appl. Opt. 19, 871–883 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream warm core ring,” Appl. Opt. 22, 2272–2281 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active–passive airborne ocean color measurement. 1. Instrumentation,” Appl. Opt. 25, 39–47 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement. 2. Applications,” Appl. Opt. 25, 48–57 (1986).
[CrossRef] [PubMed]

W. A. Hovis, J. S. Knoll, “Characteristics of an internally illuminated calibration sphere,” Appl. Opt. 22, 4004–4007 (1983).
[CrossRef] [PubMed]

M. Bristow, D. Nielsen, D. Bundy, F. Furtek, “Use of water-Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt. 20, 2889–2906 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Active-passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions,” Appl. Opt. 25, 2571–2583 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements,” Appl. Opt. 34, 3468–3476 (1995).
[CrossRef] [PubMed]

Deep-Sea Res. (3)

F. E. Hoge, R. N. Swift, “The influence of chlorophyll pigment upon upwelling spectral radiances from the North Atlantic Ocean: an active-passive correlation spectroscopy study,” Deep-Sea Res. 40, 265–277 (1993).
[CrossRef]

T. M. Kana, P. M. Glibert, “Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803. I. Growth, pigmentation, and cell composition,” Deep-Sea Res. 34, 479–495 (1987).
[CrossRef]

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry,” Deep-Sea Res. 35, 425–440 (1988).
[CrossRef]

J. Biol. Chem. (1)

L. J. Ong, A. N. Glazer, “Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins,” J. Biol. Chem. 266, 9515–9527 (1991).
[PubMed]

J. Geophys. Res. (2)

F. E. Hoge, R. N. Swift, J. Y. Yungel, A. Vodacek, “Fluorescence of dissolved organic matter: a comparison of North Pacific and North Atlantic Oceans during April 1991,” J. Geophys. Res. 98, 22,779–22,787 (1993).
[CrossRef]

F. E. Hoge, M. E. Williams, R. N. Swift, J. K. Yungel, A. Vodacek, “Satellite retrieval of the absorption coefficient of chromophoric dissolved organic matter in continental margins,” J. Geophys. Res. 100, 24,847–24,854 (1995).
[CrossRef]

Limnol. Oceanogr. (1)

R. J. Olson, S. W. Chisholm, E. R. Zettler, E. V. Armbrust, “Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans,” Limnol. Oceanogr. 35, 45–58 (1990).
[CrossRef]

Marine Ecol. Prog. Ser. (2)

T. M. Kana, N. L. Feiwel, L. C. Flynn, “Nitrogen starvation in marine Synechococcus strains: clonal differences in phycobiliprotein breakdown and energy coupling,” Marine Ecol. Prog. Ser. 88, 75–82 (1992).
[CrossRef]

M. M. Vernet, B. G. Mitchell, O. Holm-Hansen, “Adaptation of Synechococcus in situ determined by variability in intracellular phycoerythrin-543 at a coastal station off the Southern California coast, USA,” Marine Ecol. Prog. Ser. 63, 9–16 (1990).
[CrossRef]

Remote Sensing Environ. (1)

F. E. Hoge, R. N. Swift, “Phytoplankton accessory pigments: evidence for the influence of phycoerythrin on the submarine light field,” Remote Sensing Environ. 34, 19–25 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

PEB excitation spectra and fluorescence emission spectra of three cultures of phytoplankton that have PE: PUB rich (WH 8102; diamonds), PUB intermediate (WH 7803; triangles), and PUB deficient (WH 8018; circles). (A) The peak of the excitation spectrum shifts toward blue wavelengths when PUB chromophores are substituted within the hexameric protein aggregate. (B) As with the excitation spectra, the peak of the fluorescence emission spectrum shifts toward blue wavelengths when PUB chromophores are substituted within the hexameric protein aggregate.

Fig. 2
Fig. 2

Flight tracks of the NASA P3-B aircraft with the AOL system on 3 April 1995. The flight was initiated from Wallops Island toward the northeast, reoriented ∼90°, and directed southeast to ∼72 °W longitude and ∼36 °N latitude. The flight track then traversed toward the northwest and terminated within Delaware Bay. The flight track deviation at 73.25 °W longitude and ∼37.25 °N latitude was made to avoid a military field operation that was being conducted in that vicinity.

Fig. 3
Fig. 3

(a) 532-nm laser-induced and water Raman–normalized PE fluorescence in the 566- and 593-nm AOL bands acquired during the west-to-east (outbound) flight track. (b) Ratio of the 566-nm fluorescence to 593-nm fluorescence. In the slope waters at ∼73.4 °W longitude the 566/593 nm ratio begins increasing in the offshore direction. (c) 532-nm laser-induced and water Raman–normalized chlorophyll fluorescence acquired during the outbound flight track. The chlorophyll fluorescence is highly correlated with the PEB fluorescence within the shelf water mass, except within the colder water flanking the coastline at the western end of the flight track. The SST data are from the airborne infrared radiometer.

Fig. 4
Fig. 4

(a) 532-nm laser-induced and water Raman–normalized PE fluorescence in the 566- and 593-nm bands acquired during the east-to-west (inbound) flight track. (b) Ratio of 566-nm fluorescence to 593-nm fluorescence. (c) 532-nm laser-induced and water Raman–normalized chlorophyll fluorescence acquired during the inbound flight track. The chlorophyll fluorescence is highly correlated with the PEB fluorescence within the shelf water mass. The SST data are from the airborne infrared radiometer.

Metrics