Abstract

We have analyzed three methods that can be used to determine the integrated water vapor of the atmosphere in the 940-nm band by means of modeled and measured direct solar spectral irradiance. The experimental irradiance data were obtained with a commercial LI-COR 1800 spectroradiometer, based on a monochromator system, of high to moderate spectral resolution (6 nm) in the 300–1100-nm range. The modeled data are based on monochromatic approaches to determine atmospheric transmittance constituents; for those of water vapor we used the lowtran7 model. The first method is a curve-fitting procedure that makes use of the entire shape band absorption information to retrieve a unique water-vapor value. The second method makes use of the monochromatic approach of the absorption transmittance formula to determine the amount of water vapor at each wavelength of the absorption band, and the third method is the classic differential absorption technique suitably applied to our data. Spectral analysis showed the advantages and disadvantages of each method, such as problems linked to the various spectral resolutions of the experimental and the modeled data, the width of the spectral range used to define the water-vapor absorption band, and the dependence of the retrieval on the choice of the two selected wavelengths in the last-named technique. All these problems were considered so they could be avoided or minimized and the associated errors estimated. We used the methods to determine water-vapor values for the period from March to November 1995 at a rural station in Vallodolid, Spain, allowing for the evaluation of the differences in real monitoring conditions. Finally, the contribution of continuum absorption was also evaluated, yielding lower water-vapor values between 13 and 30%. These differences were considerably greater than those that were due to the problems that we have just enumerated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Penndorf, “Analysis of ozone and water vapor field measurements data,” Rep. FAA-EE-78-29 (Office of Environment and Energy, U.S. Department of Transportation, Washington, D.C., 1978).
  2. A. Arking, “Absorption of solar energy in the atmosphere: discrepancy between model and observations,” Science 273, 779–792 (1996).
    [CrossRef] [PubMed]
  3. S. Rowland, I. S. A. Isaksen, eds., The Changing Atmosphere (Wiley, London, 1988).
  4. W. E. Carter, G. Mader, M. Schenewerk, “Monitoring atmospheric water vapor with the global positioning system,” presented at the AGU Chapman Conference on Water Vapor in the Climate System, Jekyll, Ga. (personal communication, 1994).
  5. D. B. Call, “A new GPS rawindsonde system” (Atmospheric Instrumentation Research, Inc. 8401 Baseline Road, Boulder, Colo., 80303, personal communication, 1995).
  6. F. E. Fowle, “The spectroscopic determination of aqueous vapor,” Astrophys. J. 35, 149–162 (1912).
    [CrossRef]
  7. D. M. Gates, “Infrared determination of precipitable water vapor in a vertical columna of the Earth’s atmosphere,” J. Meteorol. 13, 369–375 (1956).
    [CrossRef]
  8. D. M. Gates, W. J. Harrop, “Infrared transmission of the atmosphere to solar radiation,” Appl. Opt. 2, 887–898 (1963).
  9. F. E. Volz, “Economical multispectral Sun photometer for measurements of aerosol extinction from 0.44 μm to 1.6 μm and precipitable water,” Appl. Opt. 13, 1732–1733 (1974).
    [CrossRef] [PubMed]
  10. K. J. Thome, B. M. Herman, J. A. Reagan, “Determination of precipitable water from solar transmission,” J. Appl. Meteorol. 31, 157–165 (1992).
    [CrossRef]
  11. R. Frouin, P. Deschamps, P. Leconte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
    [CrossRef]
  12. D. Chesters, L. W. Uccelini, W. D. Robinson, “Low level water vapor field from the VISSR atmospheric sounder (VAS) split window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
    [CrossRef]
  13. J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
    [CrossRef]
  14. M. Arbelo, F. J. Exposito, F. Herrera, “Comparison of total water vapor content obtained from TOVS-NOAA with radiosoundings data in Canary Islands zone,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE2582, 178–184 (1995).
    [CrossRef]
  15. K. J. Thome, M. W. Smith, M. Palmer, J. A. Reagan, “Three-channel solar radiometer for the determination of atmospheric columnar water vapor,” Appl. Opt. 33, 5811–5819 (1994).
    [CrossRef] [PubMed]
  16. B. N. Holben, T. Eck, “Precipitable water in the Sahel measured using sunphotometry,” Agric. Forest Meteorol. 52, 95–107 (1990).
    [CrossRef]
  17. J. J. Michalsky, J. C. Liljegren, L. C. Harrison, “A comparison of sun photometer of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurements site,” J. Geophys. Res. 100, 25,995–26,003 (1995).
    [CrossRef]
  18. R. N. Halthore, T. F. Eck, B. N. Holben, B. L. Markham, “Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band,” J. Geophys. Res. 100, 4343–4352 (1997).
    [CrossRef]
  19. V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Determination of total vertical water vapor in the atmosphere,” Atmos. Res. 20, 67–74 (1986).
    [CrossRef]
  20. C. Cuomo, F. Espósito, G. Pavese, “A differential absorption technique, in the near infrared to determine precipitable water,” Atmos. Environ. 28, 977–987 (1994).
    [CrossRef]
  21. O. B. Vasilyev, A. Leyva, A. Muhila, M. Valdes, R. Peralta, A. Kovalenko, R. Welch, T. A. Berendes, V. Yu. Isakov, Y. P. Kulikovsky, S. S. Sokolov, N. N. Strepanov, S. S. Gulidov, W. Hoyningen-Huene, “Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory,” Appl. Opt. 34, 4426–4436 (1995).
    [CrossRef] [PubMed]
  22. A. Tebo, “Imaging spectrometer for the mission to planet Earth,” OE Rep. 157 (SPIE Press, Billingham, Wash., 1997).
  23. B. C. Gao, A. F. H. Goetz, “Column atmospheric water vapor retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
    [CrossRef]
  24. G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sensing Environ. 44, 127–143 (1993).
    [CrossRef]
  25. C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrieval during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
    [CrossRef]
  26. V. Carrère, J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—Sensitivity analysis and application to airborne visible/infrared imaging spectrometer (AVIRIS) data,” Remote Sensing Environ. 44, 179–204 (1993).
    [CrossRef]
  27. Y. J. Kaufman, Bo-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sensing 30, 871–884 (1992).
    [CrossRef]
  28. M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
    [CrossRef]
  29. B. Barsch, S. Bakan, J. Fischer, “Remote sensing of water vapor within the solar spectrum,” in Atmospheric Sensing and Modeling I, R. P. Santer, ed., Proc. SPIE2311, 197–206 (1995).
    [CrossRef]
  30. B. Smith, K. J. Thome, P. Demoulin, R. Peter, C. Maetzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
    [CrossRef]
  31. D. Schaepfer, C. C. Borel, J. Keller, K. I. Itten, “Atmospheric pre-corrected differential absorption technique to retrieve columnar water vapor: application to AVIRIS 91/95 data,” in Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, Vol. 1, (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 209–217.
  32. P. Durán, “Medidas espectroradiometricas para la determinación de componentes atmosféricos (ozono, vapor de agua y aerosoles) y la modelización del intercambio radiativo en la atmósfera,” Ph.D. dissertation (Universidad de Valladolid, Valladolid, Spain, 1997).
  33. P. Utrillas, “Estudio de los aerosoles a partir de medidas de irradiancia solar espectral,” Ph.D. dissertation (Universidad de Valencia, Valencia, Spain, 1995).
  34. V. E. Cachorro, P. Utrillas, J. A. Martinez-Lozano, A. M. de Frutos, “A preliminary assessment between a detailed two stream shortwave narrow-band model and spectral radiation measurements,” Sol. Energy 61, 265–273 (1997).
    [CrossRef]
  35. D. R. Myers, “Estimates of uncertainty for measured spectra in the SERI spectral solar radiation database,” Sol. Energy 43, 347–352 (1989).
    [CrossRef]
  36. V. E. Cachorro, P. Durán, A. M. de Frutos, “Retrieval of vertical ozone using the Chappuis band with high spectral resolution solar radiation measurements,” Geophys. Res. Lett. 23, 3325–3328 (1996).
    [CrossRef]
  37. R. Vergaz, “Turbiedad atmosférica y caracterización de los aerosoles mediante medidas espectroradiometricas,” M.Sc. thesis (Universidad de Vallodolid, Valladolid, Spain, 1996).
  38. V. E. Cachorro, P. Durán, A. M. de Frutos, P. Herreros, J. Bilbao, A. de Miguel, “A year of atmospheric vertical radiative aerosol properties monitoring by high spectral solar radiation measurements,” in Proceedings of Eurotrac Symposium’96, P. M. Borrel, P. Borrel, T. Cvitas, W. Seiler, eds. (Computational Mechanics, Southampton, UK, 1996) Vol. 1, pp. 257–260.
  39. R. E. Bird, R. L. Hulstrom, A. W. Kliman, H. G. Eldering, “Solar spectral measurements in the terrestrial environment,” Appl. Opt. 21, 1430–1436 (1983).
    [CrossRef]
  40. V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Comparison between various models of solar spectral irradiance and experimental data,” Appl. Opt. 24, 3249–3253 (1985).
    [CrossRef] [PubMed]
  41. V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “The influence of Ångström parameters on calculated direct solar spectral irradiances at high turbidity,” Sol. Energy 39, 399–407 (1987).
    [CrossRef]
  42. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
    [CrossRef] [PubMed]
  43. L. T. Molina, M. J. Molina, “Absolute absorption cross section of ozone in the 185-to-350-nm wavelength range,” J. Geophys. Res. 95, 14,501–14,508 (1986).
  44. A. Amoruso, M. Cacciani, A. DiSarra, G. Fiocco, “Absorption cross section of ozone in the 590 to 610 nm region at T = 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
    [CrossRef]
  45. W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-section of NO2 in the UV and visible (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
    [CrossRef]
  46. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users Guide to Lowtran 7,” AFGL-TR-88-0177 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1988).
  47. J. H. Pierluisi, C. E. Maragoudakis, R. Tehrani-Movahed, “New LOWTRAN band model for water vapor,” Appl. Opt. 28, 3792–3795 (1986).
    [CrossRef]
  48. Current lowtran7 version, G. P. Anderson, Geophysics Directorate, Phillips Laboratory, 29 Randolph Road, Hanscom Air Force Base, Mass. 01731 (personal communication).
  49. S. A. Clouds, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–242 (1989).
    [CrossRef]
  50. V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Determination of the Ångström turbidity parameters,” Appl. Opt. 26, 3069–3076 (1985).
    [CrossRef]
  51. V. E. Cachorro, A. De Frutos, “Retrieval of the atmospheric aerosol characteristics from visible extinction data at Valladolid (Spain),” Atmos. Environ. 28, 963–971 (1994).
    [CrossRef]
  52. V. E. Cachorro, A. De Frutos, “A revised study of the validity of the general Junge relationship at solar wavelengths: application to vertical atmospheric aerosol layer studies,” Atmos. Res. 39, 113–126 (1995).
    [CrossRef]
  53. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” AFGCL-72-0497 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1972).
  54. A. Berk, L. S. Bernstein, C. Robertson, “MODTRAN: a moderate resolution model LOWTRAN 7,” GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).
  55. J. Wang, G. P. Anderson, “Validation of FASCOD3 and MODTRAN3: comparison of model calculations with interferometer observations from SPECTRE and ITRA,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 220–231 (1994).
    [CrossRef]
  56. G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
    [CrossRef]
  57. S. Bouffiès, D. Tanré, F. M. Bréon, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the POLDER instrument,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE2582, 131–143 (1995).
    [CrossRef]
  58. U. Platt, “Differential optical absorption spectroscopy,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigris, ed. (Wiley, New York, 1994), pp. 27–86.
  59. B. Schmid, K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
    [CrossRef]

1997

R. N. Halthore, T. F. Eck, B. N. Holben, B. L. Markham, “Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band,” J. Geophys. Res. 100, 4343–4352 (1997).
[CrossRef]

V. E. Cachorro, P. Utrillas, J. A. Martinez-Lozano, A. M. de Frutos, “A preliminary assessment between a detailed two stream shortwave narrow-band model and spectral radiation measurements,” Sol. Energy 61, 265–273 (1997).
[CrossRef]

1996

V. E. Cachorro, P. Durán, A. M. de Frutos, “Retrieval of vertical ozone using the Chappuis band with high spectral resolution solar radiation measurements,” Geophys. Res. Lett. 23, 3325–3328 (1996).
[CrossRef]

B. Smith, K. J. Thome, P. Demoulin, R. Peter, C. Maetzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

A. Arking, “Absorption of solar energy in the atmosphere: discrepancy between model and observations,” Science 273, 779–792 (1996).
[CrossRef] [PubMed]

B. Schmid, K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

1995

V. E. Cachorro, A. De Frutos, “A revised study of the validity of the general Junge relationship at solar wavelengths: application to vertical atmospheric aerosol layer studies,” Atmos. Res. 39, 113–126 (1995).
[CrossRef]

J. J. Michalsky, J. C. Liljegren, L. C. Harrison, “A comparison of sun photometer of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurements site,” J. Geophys. Res. 100, 25,995–26,003 (1995).
[CrossRef]

O. B. Vasilyev, A. Leyva, A. Muhila, M. Valdes, R. Peralta, A. Kovalenko, R. Welch, T. A. Berendes, V. Yu. Isakov, Y. P. Kulikovsky, S. S. Sokolov, N. N. Strepanov, S. S. Gulidov, W. Hoyningen-Huene, “Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory,” Appl. Opt. 34, 4426–4436 (1995).
[CrossRef] [PubMed]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[CrossRef] [PubMed]

1994

C. Cuomo, F. Espósito, G. Pavese, “A differential absorption technique, in the near infrared to determine precipitable water,” Atmos. Environ. 28, 977–987 (1994).
[CrossRef]

K. J. Thome, M. W. Smith, M. Palmer, J. A. Reagan, “Three-channel solar radiometer for the determination of atmospheric columnar water vapor,” Appl. Opt. 33, 5811–5819 (1994).
[CrossRef] [PubMed]

V. E. Cachorro, A. De Frutos, “Retrieval of the atmospheric aerosol characteristics from visible extinction data at Valladolid (Spain),” Atmos. Environ. 28, 963–971 (1994).
[CrossRef]

1993

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sensing Environ. 44, 127–143 (1993).
[CrossRef]

V. Carrère, J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—Sensitivity analysis and application to airborne visible/infrared imaging spectrometer (AVIRIS) data,” Remote Sensing Environ. 44, 179–204 (1993).
[CrossRef]

1992

Y. J. Kaufman, Bo-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sensing 30, 871–884 (1992).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrieval during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

K. J. Thome, B. M. Herman, J. A. Reagan, “Determination of precipitable water from solar transmission,” J. Appl. Meteorol. 31, 157–165 (1992).
[CrossRef]

1990

R. Frouin, P. Deschamps, P. Leconte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
[CrossRef]

B. N. Holben, T. Eck, “Precipitable water in the Sahel measured using sunphotometry,” Agric. Forest Meteorol. 52, 95–107 (1990).
[CrossRef]

B. C. Gao, A. F. H. Goetz, “Column atmospheric water vapor retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

A. Amoruso, M. Cacciani, A. DiSarra, G. Fiocco, “Absorption cross section of ozone in the 590 to 610 nm region at T = 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

1989

S. A. Clouds, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–242 (1989).
[CrossRef]

D. R. Myers, “Estimates of uncertainty for measured spectra in the SERI spectral solar radiation database,” Sol. Energy 43, 347–352 (1989).
[CrossRef]

1987

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-section of NO2 in the UV and visible (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “The influence of Ångström parameters on calculated direct solar spectral irradiances at high turbidity,” Sol. Energy 39, 399–407 (1987).
[CrossRef]

1986

J. H. Pierluisi, C. E. Maragoudakis, R. Tehrani-Movahed, “New LOWTRAN band model for water vapor,” Appl. Opt. 28, 3792–3795 (1986).
[CrossRef]

L. T. Molina, M. J. Molina, “Absolute absorption cross section of ozone in the 185-to-350-nm wavelength range,” J. Geophys. Res. 95, 14,501–14,508 (1986).

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Determination of total vertical water vapor in the atmosphere,” Atmos. Res. 20, 67–74 (1986).
[CrossRef]

1985

1984

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

1983

D. Chesters, L. W. Uccelini, W. D. Robinson, “Low level water vapor field from the VISSR atmospheric sounder (VAS) split window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
[CrossRef]

R. E. Bird, R. L. Hulstrom, A. W. Kliman, H. G. Eldering, “Solar spectral measurements in the terrestrial environment,” Appl. Opt. 21, 1430–1436 (1983).
[CrossRef]

1974

1963

1956

D. M. Gates, “Infrared determination of precipitable water vapor in a vertical columna of the Earth’s atmosphere,” J. Meteorol. 13, 369–375 (1956).
[CrossRef]

1912

F. E. Fowle, “The spectroscopic determination of aqueous vapor,” Astrophys. J. 35, 149–162 (1912).
[CrossRef]

Abreu, L. W.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users Guide to Lowtran 7,” AFGL-TR-88-0177 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1988).

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

Amoruso, A.

A. Amoruso, M. Cacciani, A. DiSarra, G. Fiocco, “Absorption cross section of ozone in the 590 to 610 nm region at T = 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

Anderson, G. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users Guide to Lowtran 7,” AFGL-TR-88-0177 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1988).

J. Wang, G. P. Anderson, “Validation of FASCOD3 and MODTRAN3: comparison of model calculations with interferometer observations from SPECTRE and ITRA,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 220–231 (1994).
[CrossRef]

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

Current lowtran7 version, G. P. Anderson, Geophysics Directorate, Phillips Laboratory, 29 Randolph Road, Hanscom Air Force Base, Mass. 01731 (personal communication).

Arbelo, M.

M. Arbelo, F. J. Exposito, F. Herrera, “Comparison of total water vapor content obtained from TOVS-NOAA with radiosoundings data in Canary Islands zone,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE2582, 178–184 (1995).
[CrossRef]

Arking, A.

A. Arking, “Absorption of solar energy in the atmosphere: discrepancy between model and observations,” Science 273, 779–792 (1996).
[CrossRef] [PubMed]

Bakan, S.

B. Barsch, S. Bakan, J. Fischer, “Remote sensing of water vapor within the solar spectrum,” in Atmospheric Sensing and Modeling I, R. P. Santer, ed., Proc. SPIE2311, 197–206 (1995).
[CrossRef]

Barsch, B.

B. Barsch, S. Bakan, J. Fischer, “Remote sensing of water vapor within the solar spectrum,” in Atmospheric Sensing and Modeling I, R. P. Santer, ed., Proc. SPIE2311, 197–206 (1995).
[CrossRef]

Berendes, T. A.

Berk, A.

A. Berk, L. S. Bernstein, C. Robertson, “MODTRAN: a moderate resolution model LOWTRAN 7,” GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Bernstein, L. S.

A. Berk, L. S. Bernstein, C. Robertson, “MODTRAN: a moderate resolution model LOWTRAN 7,” GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Bilbao, J.

V. E. Cachorro, P. Durán, A. M. de Frutos, P. Herreros, J. Bilbao, A. de Miguel, “A year of atmospheric vertical radiative aerosol properties monitoring by high spectral solar radiation measurements,” in Proceedings of Eurotrac Symposium’96, P. M. Borrel, P. Borrel, T. Cvitas, W. Seiler, eds. (Computational Mechanics, Southampton, UK, 1996) Vol. 1, pp. 257–260.

Bird, R. E.

Borel, C. C.

D. Schaepfer, C. C. Borel, J. Keller, K. I. Itten, “Atmospheric pre-corrected differential absorption technique to retrieve columnar water vapor: application to AVIRIS 91/95 data,” in Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, Vol. 1, (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 209–217.

Bouffiès, S.

S. Bouffiès, D. Tanré, F. M. Bréon, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the POLDER instrument,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE2582, 131–143 (1995).
[CrossRef]

Bréon, F. M.

S. Bouffiès, D. Tanré, F. M. Bréon, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the POLDER instrument,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE2582, 131–143 (1995).
[CrossRef]

Bruegge, C. J.

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrieval during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

Bucholtz, A.

Burrows, J. P.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-section of NO2 in the UV and visible (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Cacciani, M.

A. Amoruso, M. Cacciani, A. DiSarra, G. Fiocco, “Absorption cross section of ozone in the 590 to 610 nm region at T = 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

Cachorro, V. E.

V. E. Cachorro, P. Utrillas, J. A. Martinez-Lozano, A. M. de Frutos, “A preliminary assessment between a detailed two stream shortwave narrow-band model and spectral radiation measurements,” Sol. Energy 61, 265–273 (1997).
[CrossRef]

V. E. Cachorro, P. Durán, A. M. de Frutos, “Retrieval of vertical ozone using the Chappuis band with high spectral resolution solar radiation measurements,” Geophys. Res. Lett. 23, 3325–3328 (1996).
[CrossRef]

V. E. Cachorro, A. De Frutos, “A revised study of the validity of the general Junge relationship at solar wavelengths: application to vertical atmospheric aerosol layer studies,” Atmos. Res. 39, 113–126 (1995).
[CrossRef]

V. E. Cachorro, A. De Frutos, “Retrieval of the atmospheric aerosol characteristics from visible extinction data at Valladolid (Spain),” Atmos. Environ. 28, 963–971 (1994).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “The influence of Ångström parameters on calculated direct solar spectral irradiances at high turbidity,” Sol. Energy 39, 399–407 (1987).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Determination of total vertical water vapor in the atmosphere,” Atmos. Res. 20, 67–74 (1986).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Comparison between various models of solar spectral irradiance and experimental data,” Appl. Opt. 24, 3249–3253 (1985).
[CrossRef] [PubMed]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Determination of the Ångström turbidity parameters,” Appl. Opt. 26, 3069–3076 (1985).
[CrossRef]

V. E. Cachorro, P. Durán, A. M. de Frutos, P. Herreros, J. Bilbao, A. de Miguel, “A year of atmospheric vertical radiative aerosol properties monitoring by high spectral solar radiation measurements,” in Proceedings of Eurotrac Symposium’96, P. M. Borrel, P. Borrel, T. Cvitas, W. Seiler, eds. (Computational Mechanics, Southampton, UK, 1996) Vol. 1, pp. 257–260.

Call, D. B.

D. B. Call, “A new GPS rawindsonde system” (Atmospheric Instrumentation Research, Inc. 8401 Baseline Road, Boulder, Colo., 80303, personal communication, 1995).

Carrère, V.

V. Carrère, J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—Sensitivity analysis and application to airborne visible/infrared imaging spectrometer (AVIRIS) data,” Remote Sensing Environ. 44, 179–204 (1993).
[CrossRef]

Carter, W. E.

W. E. Carter, G. Mader, M. Schenewerk, “Monitoring atmospheric water vapor with the global positioning system,” presented at the AGU Chapman Conference on Water Vapor in the Climate System, Jekyll, Ga. (personal communication, 1994).

Casanova, J. L.

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “The influence of Ångström parameters on calculated direct solar spectral irradiances at high turbidity,” Sol. Energy 39, 399–407 (1987).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Determination of total vertical water vapor in the atmosphere,” Atmos. Res. 20, 67–74 (1986).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Comparison between various models of solar spectral irradiance and experimental data,” Appl. Opt. 24, 3249–3253 (1985).
[CrossRef] [PubMed]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Determination of the Ångström turbidity parameters,” Appl. Opt. 26, 3069–3076 (1985).
[CrossRef]

Chesters, D.

D. Chesters, L. W. Uccelini, W. D. Robinson, “Low level water vapor field from the VISSR atmospheric sounder (VAS) split window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
[CrossRef]

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users Guide to Lowtran 7,” AFGL-TR-88-0177 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1988).

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

Chrien, T. G.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sensing Environ. 44, 127–143 (1993).
[CrossRef]

Clouds, S. A.

S. A. Clouds, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–242 (1989).
[CrossRef]

Clough, S. A.

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users Guide to Lowtran 7,” AFGL-TR-88-0177 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1988).

Conel, J. E.

V. Carrère, J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—Sensitivity analysis and application to airborne visible/infrared imaging spectrometer (AVIRIS) data,” Remote Sensing Environ. 44, 179–204 (1993).
[CrossRef]

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrieval during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

Cuomo, C.

C. Cuomo, F. Espósito, G. Pavese, “A differential absorption technique, in the near infrared to determine precipitable water,” Atmos. Environ. 28, 977–987 (1994).
[CrossRef]

Davies, R. W.

S. A. Clouds, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–242 (1989).
[CrossRef]

De Frutos, A.

V. E. Cachorro, A. De Frutos, “A revised study of the validity of the general Junge relationship at solar wavelengths: application to vertical atmospheric aerosol layer studies,” Atmos. Res. 39, 113–126 (1995).
[CrossRef]

V. E. Cachorro, A. De Frutos, “Retrieval of the atmospheric aerosol characteristics from visible extinction data at Valladolid (Spain),” Atmos. Environ. 28, 963–971 (1994).
[CrossRef]

de Frutos, A. M.

V. E. Cachorro, P. Utrillas, J. A. Martinez-Lozano, A. M. de Frutos, “A preliminary assessment between a detailed two stream shortwave narrow-band model and spectral radiation measurements,” Sol. Energy 61, 265–273 (1997).
[CrossRef]

V. E. Cachorro, P. Durán, A. M. de Frutos, “Retrieval of vertical ozone using the Chappuis band with high spectral resolution solar radiation measurements,” Geophys. Res. Lett. 23, 3325–3328 (1996).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “The influence of Ångström parameters on calculated direct solar spectral irradiances at high turbidity,” Sol. Energy 39, 399–407 (1987).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Determination of total vertical water vapor in the atmosphere,” Atmos. Res. 20, 67–74 (1986).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Comparison between various models of solar spectral irradiance and experimental data,” Appl. Opt. 24, 3249–3253 (1985).
[CrossRef] [PubMed]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Determination of the Ångström turbidity parameters,” Appl. Opt. 26, 3069–3076 (1985).
[CrossRef]

V. E. Cachorro, P. Durán, A. M. de Frutos, P. Herreros, J. Bilbao, A. de Miguel, “A year of atmospheric vertical radiative aerosol properties monitoring by high spectral solar radiation measurements,” in Proceedings of Eurotrac Symposium’96, P. M. Borrel, P. Borrel, T. Cvitas, W. Seiler, eds. (Computational Mechanics, Southampton, UK, 1996) Vol. 1, pp. 257–260.

de Miguel, A.

V. E. Cachorro, P. Durán, A. M. de Frutos, P. Herreros, J. Bilbao, A. de Miguel, “A year of atmospheric vertical radiative aerosol properties monitoring by high spectral solar radiation measurements,” in Proceedings of Eurotrac Symposium’96, P. M. Borrel, P. Borrel, T. Cvitas, W. Seiler, eds. (Computational Mechanics, Southampton, UK, 1996) Vol. 1, pp. 257–260.

Demoulin, P.

B. Smith, K. J. Thome, P. Demoulin, R. Peter, C. Maetzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

B. Schmid, K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

Deschamps, P.

R. Frouin, P. Deschamps, P. Leconte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
[CrossRef]

DiSarra, A.

A. Amoruso, M. Cacciani, A. DiSarra, G. Fiocco, “Absorption cross section of ozone in the 590 to 610 nm region at T = 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

Dubuisson, P.

S. Bouffiès, D. Tanré, F. M. Bréon, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the POLDER instrument,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE2582, 131–143 (1995).
[CrossRef]

Durán, P.

V. E. Cachorro, P. Durán, A. M. de Frutos, “Retrieval of vertical ozone using the Chappuis band with high spectral resolution solar radiation measurements,” Geophys. Res. Lett. 23, 3325–3328 (1996).
[CrossRef]

P. Durán, “Medidas espectroradiometricas para la determinación de componentes atmosféricos (ozono, vapor de agua y aerosoles) y la modelización del intercambio radiativo en la atmósfera,” Ph.D. dissertation (Universidad de Valladolid, Valladolid, Spain, 1997).

V. E. Cachorro, P. Durán, A. M. de Frutos, P. Herreros, J. Bilbao, A. de Miguel, “A year of atmospheric vertical radiative aerosol properties monitoring by high spectral solar radiation measurements,” in Proceedings of Eurotrac Symposium’96, P. M. Borrel, P. Borrel, T. Cvitas, W. Seiler, eds. (Computational Mechanics, Southampton, UK, 1996) Vol. 1, pp. 257–260.

Eck, T.

B. N. Holben, T. Eck, “Precipitable water in the Sahel measured using sunphotometry,” Agric. Forest Meteorol. 52, 95–107 (1990).
[CrossRef]

Eck, T. F.

R. N. Halthore, T. F. Eck, B. N. Holben, B. L. Markham, “Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band,” J. Geophys. Res. 100, 4343–4352 (1997).
[CrossRef]

Eldering, H. G.

Enmark, H. T.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sensing Environ. 44, 127–143 (1993).
[CrossRef]

Espósito, F.

C. Cuomo, F. Espósito, G. Pavese, “A differential absorption technique, in the near infrared to determine precipitable water,” Atmos. Environ. 28, 977–987 (1994).
[CrossRef]

Exposito, F. J.

M. Arbelo, F. J. Exposito, F. Herrera, “Comparison of total water vapor content obtained from TOVS-NOAA with radiosoundings data in Canary Islands zone,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE2582, 178–184 (1995).
[CrossRef]

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” AFGCL-72-0497 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1972).

Fiocco, G.

A. Amoruso, M. Cacciani, A. DiSarra, G. Fiocco, “Absorption cross section of ozone in the 590 to 610 nm region at T = 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

Fischer, J.

B. Barsch, S. Bakan, J. Fischer, “Remote sensing of water vapor within the solar spectrum,” in Atmospheric Sensing and Modeling I, R. P. Santer, ed., Proc. SPIE2311, 197–206 (1995).
[CrossRef]

Fowle, F. E.

F. E. Fowle, “The spectroscopic determination of aqueous vapor,” Astrophys. J. 35, 149–162 (1912).
[CrossRef]

Frouin, R.

R. Frouin, P. Deschamps, P. Leconte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
[CrossRef]

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users Guide to Lowtran 7,” AFGL-TR-88-0177 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1988).

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

Gao, B. C.

B. C. Gao, A. F. H. Goetz, “Column atmospheric water vapor retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

Gao, Bo-C.

Y. J. Kaufman, Bo-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sensing 30, 871–884 (1992).
[CrossRef]

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” AFGCL-72-0497 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1972).

Gates, D. M.

D. M. Gates, W. J. Harrop, “Infrared transmission of the atmosphere to solar radiation,” Appl. Opt. 2, 887–898 (1963).

D. M. Gates, “Infrared determination of precipitable water vapor in a vertical columna of the Earth’s atmosphere,” J. Meteorol. 13, 369–375 (1956).
[CrossRef]

Goetz, A. F. H.

B. C. Gao, A. F. H. Goetz, “Column atmospheric water vapor retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

Green, R. O.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sensing Environ. 44, 127–143 (1993).
[CrossRef]

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrieval during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

Gulidov, S. S.

Halthore, R. N.

R. N. Halthore, T. F. Eck, B. N. Holben, B. L. Markham, “Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band,” J. Geophys. Res. 100, 4343–4352 (1997).
[CrossRef]

Hansen, E. G.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sensing Environ. 44, 127–143 (1993).
[CrossRef]

Harrison, L. C.

J. J. Michalsky, J. C. Liljegren, L. C. Harrison, “A comparison of sun photometer of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurements site,” J. Geophys. Res. 100, 25,995–26,003 (1995).
[CrossRef]

Harrop, W. J.

Herman, B. M.

K. J. Thome, B. M. Herman, J. A. Reagan, “Determination of precipitable water from solar transmission,” J. Appl. Meteorol. 31, 157–165 (1992).
[CrossRef]

Herrera, F.

M. Arbelo, F. J. Exposito, F. Herrera, “Comparison of total water vapor content obtained from TOVS-NOAA with radiosoundings data in Canary Islands zone,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE2582, 178–184 (1995).
[CrossRef]

Herreros, P.

V. E. Cachorro, P. Durán, A. M. de Frutos, P. Herreros, J. Bilbao, A. de Miguel, “A year of atmospheric vertical radiative aerosol properties monitoring by high spectral solar radiation measurements,” in Proceedings of Eurotrac Symposium’96, P. M. Borrel, P. Borrel, T. Cvitas, W. Seiler, eds. (Computational Mechanics, Southampton, UK, 1996) Vol. 1, pp. 257–260.

Hoke, M. L.

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

Holben, B. N.

R. N. Halthore, T. F. Eck, B. N. Holben, B. L. Markham, “Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band,” J. Geophys. Res. 100, 4343–4352 (1997).
[CrossRef]

B. N. Holben, T. Eck, “Precipitable water in the Sahel measured using sunphotometry,” Agric. Forest Meteorol. 52, 95–107 (1990).
[CrossRef]

Holm, R. G.

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrieval during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

Hoyningen-Huene, W.

Hulstrom, R. L.

Isakov, V. Yu.

Itten, K. I.

D. Schaepfer, C. C. Borel, J. Keller, K. I. Itten, “Atmospheric pre-corrected differential absorption technique to retrieve columnar water vapor: application to AVIRIS 91/95 data,” in Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, Vol. 1, (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 209–217.

Kaufman, Y. J.

Y. J. Kaufman, Bo-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sensing 30, 871–884 (1992).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

Keller, J.

D. Schaepfer, C. C. Borel, J. Keller, K. I. Itten, “Atmospheric pre-corrected differential absorption technique to retrieve columnar water vapor: application to AVIRIS 91/95 data,” in Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, Vol. 1, (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 209–217.

Kimball, L. M.

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

King, M. D.

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

Kliman, A. W.

Kneizys, F. X.

S. A. Clouds, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–242 (1989).
[CrossRef]

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users Guide to Lowtran 7,” AFGL-TR-88-0177 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1988).

Kovalenko, A.

Kulikovsky, Y. P.

Leconte, P.

R. Frouin, P. Deschamps, P. Leconte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
[CrossRef]

Leyva, A.

Liljegren, J. C.

J. J. Michalsky, J. C. Liljegren, L. C. Harrison, “A comparison of sun photometer of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurements site,” J. Geophys. Res. 100, 25,995–26,003 (1995).
[CrossRef]

Mader, G.

W. E. Carter, G. Mader, M. Schenewerk, “Monitoring atmospheric water vapor with the global positioning system,” presented at the AGU Chapman Conference on Water Vapor in the Climate System, Jekyll, Ga. (personal communication, 1994).

Maetzler, C.

B. Smith, K. J. Thome, P. Demoulin, R. Peter, C. Maetzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

Maragoudakis, C. E.

Margolis, J. S.

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrieval during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

Markham, B. L.

R. N. Halthore, T. F. Eck, B. N. Holben, B. L. Markham, “Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band,” J. Geophys. Res. 100, 4343–4352 (1997).
[CrossRef]

Martinez-Lozano, J. A.

V. E. Cachorro, P. Utrillas, J. A. Martinez-Lozano, A. M. de Frutos, “A preliminary assessment between a detailed two stream shortwave narrow-band model and spectral radiation measurements,” Sol. Energy 61, 265–273 (1997).
[CrossRef]

Mätzler, C.

B. Schmid, K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

McClatchey, R. A.

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” AFGCL-72-0497 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1972).

Menzel, W. P.

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

Michalsky, J. J.

J. J. Michalsky, J. C. Liljegren, L. C. Harrison, “A comparison of sun photometer of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurements site,” J. Geophys. Res. 100, 25,995–26,003 (1995).
[CrossRef]

Molina, L. T.

L. T. Molina, M. J. Molina, “Absolute absorption cross section of ozone in the 185-to-350-nm wavelength range,” J. Geophys. Res. 95, 14,501–14,508 (1986).

Molina, M. J.

L. T. Molina, M. J. Molina, “Absolute absorption cross section of ozone in the 185-to-350-nm wavelength range,” J. Geophys. Res. 95, 14,501–14,508 (1986).

Moortgat, G. K.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-section of NO2 in the UV and visible (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Muhila, A.

Myers, D. R.

D. R. Myers, “Estimates of uncertainty for measured spectra in the SERI spectral solar radiation database,” Sol. Energy 43, 347–352 (1989).
[CrossRef]

Palmer, M.

Pavese, G.

C. Cuomo, F. Espósito, G. Pavese, “A differential absorption technique, in the near infrared to determine precipitable water,” Atmos. Environ. 28, 977–987 (1994).
[CrossRef]

Penndorf, R.

R. Penndorf, “Analysis of ozone and water vapor field measurements data,” Rep. FAA-EE-78-29 (Office of Environment and Energy, U.S. Department of Transportation, Washington, D.C., 1978).

Peralta, R.

Peter, R.

B. Smith, K. J. Thome, P. Demoulin, R. Peter, C. Maetzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

B. Schmid, K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

Pierluisi, J. H.

Platt, U.

U. Platt, “Differential optical absorption spectroscopy,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigris, ed. (Wiley, New York, 1994), pp. 27–86.

Porter, W. M.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sensing Environ. 44, 127–143 (1993).
[CrossRef]

Reagan, J. A.

K. J. Thome, M. W. Smith, M. Palmer, J. A. Reagan, “Three-channel solar radiometer for the determination of atmospheric columnar water vapor,” Appl. Opt. 33, 5811–5819 (1994).
[CrossRef] [PubMed]

K. J. Thome, B. M. Herman, J. A. Reagan, “Determination of precipitable water from solar transmission,” J. Appl. Meteorol. 31, 157–165 (1992).
[CrossRef]

Reuter, D.

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

Robertson, C.

A. Berk, L. S. Bernstein, C. Robertson, “MODTRAN: a moderate resolution model LOWTRAN 7,” GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Robinson, W. D.

D. Chesters, L. W. Uccelini, W. D. Robinson, “Low level water vapor field from the VISSR atmospheric sounder (VAS) split window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
[CrossRef]

Rosenfield, J.

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

Rothman, L. S.

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

Schaepfer, D.

D. Schaepfer, C. C. Borel, J. Keller, K. I. Itten, “Atmospheric pre-corrected differential absorption technique to retrieve columnar water vapor: application to AVIRIS 91/95 data,” in Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, Vol. 1, (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 209–217.

Schenewerk, M.

W. E. Carter, G. Mader, M. Schenewerk, “Monitoring atmospheric water vapor with the global positioning system,” presented at the AGU Chapman Conference on Water Vapor in the Climate System, Jekyll, Ga. (personal communication, 1994).

Schmid, B.

B. Schmid, K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

Schneider, W.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-section of NO2 in the UV and visible (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Sekler, J.

B. Smith, K. J. Thome, P. Demoulin, R. Peter, C. Maetzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

B. Schmid, K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

Selby, J. E. A.

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” AFGCL-72-0497 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1972).

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users Guide to Lowtran 7,” AFGL-TR-88-0177 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1988).

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users Guide to Lowtran 7,” AFGL-TR-88-0177 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1988).

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

Smith, B.

B. Smith, K. J. Thome, P. Demoulin, R. Peter, C. Maetzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

Smith, M. W.

Sokolov, S. S.

Strepanov, N. N.

Susskind, J.

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

Tanré, D.

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

S. Bouffiès, D. Tanré, F. M. Bréon, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the POLDER instrument,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE2582, 131–143 (1995).
[CrossRef]

Tebo, A.

A. Tebo, “Imaging spectrometer for the mission to planet Earth,” OE Rep. 157 (SPIE Press, Billingham, Wash., 1997).

Tehrani-Movahed, R.

Thome, K. J.

B. Smith, K. J. Thome, P. Demoulin, R. Peter, C. Maetzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

B. Schmid, K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

K. J. Thome, M. W. Smith, M. Palmer, J. A. Reagan, “Three-channel solar radiometer for the determination of atmospheric columnar water vapor,” Appl. Opt. 33, 5811–5819 (1994).
[CrossRef] [PubMed]

K. J. Thome, B. M. Herman, J. A. Reagan, “Determination of precipitable water from solar transmission,” J. Appl. Meteorol. 31, 157–165 (1992).
[CrossRef]

Toon, G.

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrieval during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

Tyndall, G. S.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-section of NO2 in the UV and visible (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Uccelini, L. W.

D. Chesters, L. W. Uccelini, W. D. Robinson, “Low level water vapor field from the VISSR atmospheric sounder (VAS) split window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
[CrossRef]

Utrillas, P.

V. E. Cachorro, P. Utrillas, J. A. Martinez-Lozano, A. M. de Frutos, “A preliminary assessment between a detailed two stream shortwave narrow-band model and spectral radiation measurements,” Sol. Energy 61, 265–273 (1997).
[CrossRef]

P. Utrillas, “Estudio de los aerosoles a partir de medidas de irradiancia solar espectral,” Ph.D. dissertation (Universidad de Valencia, Valencia, Spain, 1995).

Valdes, M.

Vane, G.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sensing Environ. 44, 127–143 (1993).
[CrossRef]

Vasilyev, O. B.

Vergaz, R.

R. Vergaz, “Turbiedad atmosférica y caracterización de los aerosoles mediante medidas espectroradiometricas,” M.Sc. thesis (Universidad de Vallodolid, Valladolid, Spain, 1996).

Volz, F. E.

F. E. Volz, “Economical multispectral Sun photometer for measurements of aerosol extinction from 0.44 μm to 1.6 μm and precipitable water,” Appl. Opt. 13, 1732–1733 (1974).
[CrossRef] [PubMed]

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” AFGCL-72-0497 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1972).

Wang, J.

J. Wang, G. P. Anderson, “Validation of FASCOD3 and MODTRAN3: comparison of model calculations with interferometer observations from SPECTRE and ITRA,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 220–231 (1994).
[CrossRef]

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

Welch, R.

Agric. Forest Meteorol.

B. N. Holben, T. Eck, “Precipitable water in the Sahel measured using sunphotometry,” Agric. Forest Meteorol. 52, 95–107 (1990).
[CrossRef]

Appl. Opt.

K. J. Thome, M. W. Smith, M. Palmer, J. A. Reagan, “Three-channel solar radiometer for the determination of atmospheric columnar water vapor,” Appl. Opt. 33, 5811–5819 (1994).
[CrossRef] [PubMed]

D. M. Gates, W. J. Harrop, “Infrared transmission of the atmosphere to solar radiation,” Appl. Opt. 2, 887–898 (1963).

F. E. Volz, “Economical multispectral Sun photometer for measurements of aerosol extinction from 0.44 μm to 1.6 μm and precipitable water,” Appl. Opt. 13, 1732–1733 (1974).
[CrossRef] [PubMed]

O. B. Vasilyev, A. Leyva, A. Muhila, M. Valdes, R. Peralta, A. Kovalenko, R. Welch, T. A. Berendes, V. Yu. Isakov, Y. P. Kulikovsky, S. S. Sokolov, N. N. Strepanov, S. S. Gulidov, W. Hoyningen-Huene, “Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory,” Appl. Opt. 34, 4426–4436 (1995).
[CrossRef] [PubMed]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[CrossRef] [PubMed]

R. E. Bird, R. L. Hulstrom, A. W. Kliman, H. G. Eldering, “Solar spectral measurements in the terrestrial environment,” Appl. Opt. 21, 1430–1436 (1983).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Comparison between various models of solar spectral irradiance and experimental data,” Appl. Opt. 24, 3249–3253 (1985).
[CrossRef] [PubMed]

J. H. Pierluisi, C. E. Maragoudakis, R. Tehrani-Movahed, “New LOWTRAN band model for water vapor,” Appl. Opt. 28, 3792–3795 (1986).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Determination of the Ångström turbidity parameters,” Appl. Opt. 26, 3069–3076 (1985).
[CrossRef]

Astrophys. J.

F. E. Fowle, “The spectroscopic determination of aqueous vapor,” Astrophys. J. 35, 149–162 (1912).
[CrossRef]

Atmos. Environ.

C. Cuomo, F. Espósito, G. Pavese, “A differential absorption technique, in the near infrared to determine precipitable water,” Atmos. Environ. 28, 977–987 (1994).
[CrossRef]

V. E. Cachorro, A. De Frutos, “Retrieval of the atmospheric aerosol characteristics from visible extinction data at Valladolid (Spain),” Atmos. Environ. 28, 963–971 (1994).
[CrossRef]

Atmos. Res.

V. E. Cachorro, A. De Frutos, “A revised study of the validity of the general Junge relationship at solar wavelengths: application to vertical atmospheric aerosol layer studies,” Atmos. Res. 39, 113–126 (1995).
[CrossRef]

S. A. Clouds, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–242 (1989).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “Determination of total vertical water vapor in the atmosphere,” Atmos. Res. 20, 67–74 (1986).
[CrossRef]

Geophys. Res. Lett.

V. E. Cachorro, P. Durán, A. M. de Frutos, “Retrieval of vertical ozone using the Chappuis band with high spectral resolution solar radiation measurements,” Geophys. Res. Lett. 23, 3325–3328 (1996).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing

Y. J. Kaufman, Bo-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sensing 30, 871–884 (1992).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
[CrossRef]

J. Appl. Meteorol.

K. J. Thome, B. M. Herman, J. A. Reagan, “Determination of precipitable water from solar transmission,” J. Appl. Meteorol. 31, 157–165 (1992).
[CrossRef]

R. Frouin, P. Deschamps, P. Leconte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
[CrossRef]

J. Clim. Appl. Meteorol.

D. Chesters, L. W. Uccelini, W. D. Robinson, “Low level water vapor field from the VISSR atmospheric sounder (VAS) split window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
[CrossRef]

J. Geophys. Res.

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

J. J. Michalsky, J. C. Liljegren, L. C. Harrison, “A comparison of sun photometer of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurements site,” J. Geophys. Res. 100, 25,995–26,003 (1995).
[CrossRef]

R. N. Halthore, T. F. Eck, B. N. Holben, B. L. Markham, “Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band,” J. Geophys. Res. 100, 4343–4352 (1997).
[CrossRef]

C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, G. Toon, “Water vapor column abundance retrieval during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
[CrossRef]

B. C. Gao, A. F. H. Goetz, “Column atmospheric water vapor retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

B. Smith, K. J. Thome, P. Demoulin, R. Peter, C. Maetzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

B. Schmid, K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
[CrossRef]

L. T. Molina, M. J. Molina, “Absolute absorption cross section of ozone in the 185-to-350-nm wavelength range,” J. Geophys. Res. 95, 14,501–14,508 (1986).

A. Amoruso, M. Cacciani, A. DiSarra, G. Fiocco, “Absorption cross section of ozone in the 590 to 610 nm region at T = 299 K,” J. Geophys. Res. 95, 20,565–20,568 (1990).
[CrossRef]

J. Meteorol.

D. M. Gates, “Infrared determination of precipitable water vapor in a vertical columna of the Earth’s atmosphere,” J. Meteorol. 13, 369–375 (1956).
[CrossRef]

J. Photochem. Photobiol. A

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-section of NO2 in the UV and visible (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Remote Sensing Environ.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sensing Environ. 44, 127–143 (1993).
[CrossRef]

V. Carrère, J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—Sensitivity analysis and application to airborne visible/infrared imaging spectrometer (AVIRIS) data,” Remote Sensing Environ. 44, 179–204 (1993).
[CrossRef]

Science

A. Arking, “Absorption of solar energy in the atmosphere: discrepancy between model and observations,” Science 273, 779–792 (1996).
[CrossRef] [PubMed]

Sol. Energy

V. E. Cachorro, P. Utrillas, J. A. Martinez-Lozano, A. M. de Frutos, “A preliminary assessment between a detailed two stream shortwave narrow-band model and spectral radiation measurements,” Sol. Energy 61, 265–273 (1997).
[CrossRef]

D. R. Myers, “Estimates of uncertainty for measured spectra in the SERI spectral solar radiation database,” Sol. Energy 43, 347–352 (1989).
[CrossRef]

V. E. Cachorro, A. M. de Frutos, J. L. Casanova, “The influence of Ångström parameters on calculated direct solar spectral irradiances at high turbidity,” Sol. Energy 39, 399–407 (1987).
[CrossRef]

Other

Current lowtran7 version, G. P. Anderson, Geophysics Directorate, Phillips Laboratory, 29 Randolph Road, Hanscom Air Force Base, Mass. 01731 (personal communication).

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users Guide to Lowtran 7,” AFGL-TR-88-0177 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1988).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical properties of the atmosphere,” AFGCL-72-0497 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1972).

A. Berk, L. S. Bernstein, C. Robertson, “MODTRAN: a moderate resolution model LOWTRAN 7,” GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

J. Wang, G. P. Anderson, “Validation of FASCOD3 and MODTRAN3: comparison of model calculations with interferometer observations from SPECTRE and ITRA,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 220–231 (1994).
[CrossRef]

G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE2309, 170–183 (1994).
[CrossRef]

S. Bouffiès, D. Tanré, F. M. Bréon, P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the POLDER instrument,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE2582, 131–143 (1995).
[CrossRef]

U. Platt, “Differential optical absorption spectroscopy,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigris, ed. (Wiley, New York, 1994), pp. 27–86.

R. Vergaz, “Turbiedad atmosférica y caracterización de los aerosoles mediante medidas espectroradiometricas,” M.Sc. thesis (Universidad de Vallodolid, Valladolid, Spain, 1996).

V. E. Cachorro, P. Durán, A. M. de Frutos, P. Herreros, J. Bilbao, A. de Miguel, “A year of atmospheric vertical radiative aerosol properties monitoring by high spectral solar radiation measurements,” in Proceedings of Eurotrac Symposium’96, P. M. Borrel, P. Borrel, T. Cvitas, W. Seiler, eds. (Computational Mechanics, Southampton, UK, 1996) Vol. 1, pp. 257–260.

D. Schaepfer, C. C. Borel, J. Keller, K. I. Itten, “Atmospheric pre-corrected differential absorption technique to retrieve columnar water vapor: application to AVIRIS 91/95 data,” in Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, Vol. 1, (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 209–217.

P. Durán, “Medidas espectroradiometricas para la determinación de componentes atmosféricos (ozono, vapor de agua y aerosoles) y la modelización del intercambio radiativo en la atmósfera,” Ph.D. dissertation (Universidad de Valladolid, Valladolid, Spain, 1997).

P. Utrillas, “Estudio de los aerosoles a partir de medidas de irradiancia solar espectral,” Ph.D. dissertation (Universidad de Valencia, Valencia, Spain, 1995).

B. Barsch, S. Bakan, J. Fischer, “Remote sensing of water vapor within the solar spectrum,” in Atmospheric Sensing and Modeling I, R. P. Santer, ed., Proc. SPIE2311, 197–206 (1995).
[CrossRef]

A. Tebo, “Imaging spectrometer for the mission to planet Earth,” OE Rep. 157 (SPIE Press, Billingham, Wash., 1997).

S. Rowland, I. S. A. Isaksen, eds., The Changing Atmosphere (Wiley, London, 1988).

W. E. Carter, G. Mader, M. Schenewerk, “Monitoring atmospheric water vapor with the global positioning system,” presented at the AGU Chapman Conference on Water Vapor in the Climate System, Jekyll, Ga. (personal communication, 1994).

D. B. Call, “A new GPS rawindsonde system” (Atmospheric Instrumentation Research, Inc. 8401 Baseline Road, Boulder, Colo., 80303, personal communication, 1995).

M. Arbelo, F. J. Exposito, F. Herrera, “Comparison of total water vapor content obtained from TOVS-NOAA with radiosoundings data in Canary Islands zone,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE2582, 178–184 (1995).
[CrossRef]

R. Penndorf, “Analysis of ozone and water vapor field measurements data,” Rep. FAA-EE-78-29 (Office of Environment and Energy, U.S. Department of Transportation, Washington, D.C., 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Difference between two successive six-month calibration factors [the y scale is given as a percentage of 1 (100%) here and hereafter].

Fig. 2
Fig. 2

(a) Comparison of measured and modeled direct spectral-irradiance data. The modeled water-vapor data are based on the lowtran7 1-nm sampling absorption coefficients with convolution with the instrument function and without it taken into account. (b) Relative differences between the measured and the two modeled spectra.

Fig. 3
Fig. 3

Water-vapor content values measured in 1995 (from March to November) by the CF method with convolution taken into account.

Fig. 4
Fig. 4

Relative differences in the water-vapor-content values determined by the three kinds of CF method (see text).

Fig. 5
Fig. 5

Water-vapor values determined in the 900–980-nm spectral range by the EA method with the lowtran7 1-nm sampling absorption coefficients (solid curve) and the new smooth coefficients (asterisks). The horizontal lines A and B are the average values for the two curves.

Fig. 6
Fig. 6

Relative differences in the 1995 water-vapor content values determined by use of the two kinds of EA method and by the EA (with the new smooth coefficients) and the CF method (see text).

Fig. 7
Fig. 7

Water-vapor content values determined in the 900–980-nm spectral range by the DOAS method with the new smooth coefficients for the 850- (solid curve), the 890- (dashed curve), and 935-nm (squares) reference wavelengths.

Fig. 8
Fig. 8

Average water-vapor values as a function of the reference wavelength from the DOAS method as explained in the text.

Fig. 9
Fig. 9

Relative differences in the 1995 values of water-vapor content measured by the DOAS method with a reference wavelength of 850 nm and by the CF method with the lowtran7 1-nm sampling absorption coefficients and convolution.

Fig. 10
Fig. 10

Relative error of the 1995 water-vapor values by the CF method, assuming a 5% error in experimental irradiance data (see text).

Fig. 11
Fig. 11

Relative differences in the 1995 water-vapor content values as a function of the day of the year by the CF method (with convolution) with and without inclusion of the continuum absorption.

Fig. 12
Fig. 12

(a) Water-vapor absorption coefficients obtained from lowtran7 1-nm sampling, the new smooth coefficients, and the continuum absorption coefficients obtained according to the method described in the text. (b) Relative error of the continuum absorption coefficients according to the procedure described in the text.

Fig. 13
Fig. 13

(a) Comparison of measured and modeled transmittance spectra measured by the CF method with convolution, with (short-dashed curve, w = 1.10 cm) and without (solid curve, 1.37 cm) the contribution of the continuum absorption. The long-dashed curve corresponds to the contribution of the selective absorption alone when continuum absorption is included. (b) Relative differences between the measured and the modeled data for these two spectra.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

F λ = F 0 λ T i λ = F 0 λ T R λ T a λ × T O 3 λ T NO 2 λ T H 2 O λ T O 2 λ ,
T O 3 λ = exp - C O 3 λ l m ,
T L 7 - H 2 O λ = exp - C H 2 O λ wm a ,
C H 2 O λ = 10 B H 2 O λ ,
T a λ = exp - β λ - α m ,
w = 0   ρ z d z ,
w * = 0   ρ z P z P 0 n T 0 T z m d z ,
w λ = - ln T exp - H 2 O λ 1 / a mC H 2 O λ ,
F λ = λ - Δ λ / 2 λ + Δ λ / 2 F 0 λ T i λ ϕ λ d λ .
λ - Δ λ / 2 λ + Δ λ / 2   T L 7 - H 2 O λ ϕ λ d λ = exp - C λ wm a .
T λ cont = λ - Δ λ / 2 λ + Δ λ / 2   T L 7 - H 2 Ocont λ ϕ λ d λ = exp - C cont λ wm .

Metrics