Abstract

The technique of moving gratings in a photorefractive crystal is applied to the edge enhancement of objects and edge-enhanced optical correlation. The nonlinear dependence of the optimum fringe velocity on the fringe modulation and the variation of the enhancement of the diffraction efficiency with fringe modulation at a fixed fringe velocity appropriate to high fringe modulations are experimentally investigated. It is shown that the diffraction at high fringe modulations, which corresponds to the high-spatial-frequency components of the Fourier spectrum, is enhanced by a factor of approximately 3.7, whereas the diffraction at low fringe modulations is suppressed by a factor of 0.6. The proposed technique has the advantages of real-time enhancement, arbitrary selection of the spatial frequency to be enhanced, and improved stability of the output. Experimental results of the edge enhancement of objects and edge-enhanced correlation are presented.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
    [CrossRef]
  2. H. Rajbenbach, J. P. Huignard, B. Loiseaux, “Spatial frequency dependence of energy transfer in two-wave mixing experiments with BSO crystals,” Opt. Commun. 48, 247–252 (1983).
    [CrossRef]
  3. H. Rajbenbach, J. P. Huignard, Ph. Réfrégier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi12SiO20 crystals,” Opt. Lett. 9, 558–560 (1984).
    [CrossRef] [PubMed]
  4. Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefrective Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
    [CrossRef]
  5. G. Hamel de Monchenault, B. Loiseaux, J. P. Huignard, “Amplification of high bandwidth signals through two-wave mixing in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 50, 1794–1796 (1987).
    [CrossRef]
  6. S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, “Generation of spatial subharmonics by two-wave mixing in a nonlinear photorefractive medium,” J. Appl. Phys. 63, 5660–5663 (1988).
    [CrossRef]
  7. G. Hamel de Monchenault, J. P. Huignard, “Two-wave mixing with time modulated signal in Bi12SiO20 theory and application to homodyne wave front detection,” J. Appl. Phys. 63, 624–627 (1988).
    [CrossRef]
  8. L. B. Au, L. Solymar, “Space-charge field in photorefractive materials at large modulation,” Opt. Lett. 13, 660–662 (1988).
    [CrossRef] [PubMed]
  9. L. B. Au, L. Solymar, “Higher harmonic gratings in photorefractive materials at large modulation with moving fringes,” J. Opt. Soc. Am. A 7, 1554–1561 (1990).
    [CrossRef]
  10. J. Ma, J. E. Ford, Y. Taketomi, S. H. Lee, “Moving grating for enhanced holographic recording in cerium-doped SBN:60,” Opt. Lett. 16, 270–272 (1991).
    [CrossRef] [PubMed]
  11. G. A. Brost, K. M. Magde, J. L. Larkin, M. T. Harris, “Modulation dependence of the photorefractive response with moving gratings: numerical analysis and experiment,” J. Opt. Soc. Am. B 11, 1764–1772 (1994).
    [CrossRef]
  12. L. Solymar, D. J. Webb, A. Grunnet-Jensen, “The materials equations,” in The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996), Chap. 5, p. 182.
  13. Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “Holographic-recording improvement in a bismuth silicon oxide crystal by the moving-grating technique,” Appl. Opt. 33, 7627–7633 (1994).
    [CrossRef] [PubMed]
  14. Z. Q. Wang, C. M. Cartwright, W. A. Gillespie, N. J. Cook, “Effects of optical bias on moving gratings in bismuth silicon oxide at large fringe modulation,” Appl. Opt. 35, 3829–3834 (1996).
    [CrossRef] [PubMed]
  15. H. Rajbenbach, S. Bann, P. Réfrégier, P. Joffre, J. P. Huignard, H. S. Buchkremer, A. S. Jensen, E. Rasmussen, K. H. Brenner, G. Lohman, “Compact photorefractive correlator for robotic applications,” Appl. Opt. 31, 5666–5674 (1992).
    [CrossRef] [PubMed]
  16. Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, C. Soutar, “Real-time computer-aided multiplexed optical intensity correlator using Fresnel holographic filters and a liquid crystal television,” Opt. Commun. 86, 19–24 (1991).
    [CrossRef]
  17. G. G. Mu, Z. Q. Wang, W. Z. Chen, “Optical intensity correlator with high discrimination,” Optik (Stuttgart) 84, 23–27 (1990).
  18. J. P. Huignard, J. P. Herriau, “Real-time coherent object edge reconstruction with Bi12SiO20 crystals,” Appl. Opt. 17, 2671–2672 (1978).
    [CrossRef] [PubMed]
  19. J. Feinberg, “Real-time edge-enhancement using the photorefractive effect,” Opt. Lett. 5, 330–332 (1980).
    [CrossRef] [PubMed]
  20. N. A. Vainos, R. W. Eason, “Real time edge enhancement by active spatial filtering via five wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
    [CrossRef]
  21. Z. Q. Wang, C. Soutar, W. A. Gillespie, C. M. Cartwright, “Real-time edge-enhanced object correlation using incoherent readout of photorefractive BSO,” Optik (Stuttgart) 93, 157–162 (1993).
  22. J. L. Homer, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
    [CrossRef]
  23. A. S. Awwal, M. A. Karim, S. R. Jahan, “Improved correlation discrimination using an amplitude-modulated phase-only filter,” Appl. Opt. 29, 233–236 (1990).
    [CrossRef] [PubMed]

1996 (1)

1994 (2)

1993 (1)

Z. Q. Wang, C. Soutar, W. A. Gillespie, C. M. Cartwright, “Real-time edge-enhanced object correlation using incoherent readout of photorefractive BSO,” Optik (Stuttgart) 93, 157–162 (1993).

1992 (1)

1991 (2)

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, C. Soutar, “Real-time computer-aided multiplexed optical intensity correlator using Fresnel holographic filters and a liquid crystal television,” Opt. Commun. 86, 19–24 (1991).
[CrossRef]

J. Ma, J. E. Ford, Y. Taketomi, S. H. Lee, “Moving grating for enhanced holographic recording in cerium-doped SBN:60,” Opt. Lett. 16, 270–272 (1991).
[CrossRef] [PubMed]

1990 (3)

1988 (3)

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, “Generation of spatial subharmonics by two-wave mixing in a nonlinear photorefractive medium,” J. Appl. Phys. 63, 5660–5663 (1988).
[CrossRef]

G. Hamel de Monchenault, J. P. Huignard, “Two-wave mixing with time modulated signal in Bi12SiO20 theory and application to homodyne wave front detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

L. B. Au, L. Solymar, “Space-charge field in photorefractive materials at large modulation,” Opt. Lett. 13, 660–662 (1988).
[CrossRef] [PubMed]

1987 (1)

G. Hamel de Monchenault, B. Loiseaux, J. P. Huignard, “Amplification of high bandwidth signals through two-wave mixing in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 50, 1794–1796 (1987).
[CrossRef]

1986 (1)

N. A. Vainos, R. W. Eason, “Real time edge enhancement by active spatial filtering via five wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

1985 (1)

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefrective Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

1984 (2)

1983 (1)

H. Rajbenbach, J. P. Huignard, B. Loiseaux, “Spatial frequency dependence of energy transfer in two-wave mixing experiments with BSO crystals,” Opt. Commun. 48, 247–252 (1983).
[CrossRef]

1981 (1)

J. P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

1980 (1)

1978 (1)

Au, L. B.

Awwal, A. S.

Bann, S.

Brenner, K. H.

Brost, G. A.

Buchkremer, H. S.

Cartwright, C. M.

Z. Q. Wang, C. M. Cartwright, W. A. Gillespie, N. J. Cook, “Effects of optical bias on moving gratings in bismuth silicon oxide at large fringe modulation,” Appl. Opt. 35, 3829–3834 (1996).
[CrossRef] [PubMed]

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “Holographic-recording improvement in a bismuth silicon oxide crystal by the moving-grating technique,” Appl. Opt. 33, 7627–7633 (1994).
[CrossRef] [PubMed]

Z. Q. Wang, C. Soutar, W. A. Gillespie, C. M. Cartwright, “Real-time edge-enhanced object correlation using incoherent readout of photorefractive BSO,” Optik (Stuttgart) 93, 157–162 (1993).

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, C. Soutar, “Real-time computer-aided multiplexed optical intensity correlator using Fresnel holographic filters and a liquid crystal television,” Opt. Commun. 86, 19–24 (1991).
[CrossRef]

Chen, W. Z.

G. G. Mu, Z. Q. Wang, W. Z. Chen, “Optical intensity correlator with high discrimination,” Optik (Stuttgart) 84, 23–27 (1990).

Cook, N. J.

Ducollet, H.

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, “Generation of spatial subharmonics by two-wave mixing in a nonlinear photorefractive medium,” J. Appl. Phys. 63, 5660–5663 (1988).
[CrossRef]

Eason, R. W.

N. A. Vainos, R. W. Eason, “Real time edge enhancement by active spatial filtering via five wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

Feinberg, J.

Ford, J. E.

Gianino, P. D.

Gillespie, W. A.

Z. Q. Wang, C. M. Cartwright, W. A. Gillespie, N. J. Cook, “Effects of optical bias on moving gratings in bismuth silicon oxide at large fringe modulation,” Appl. Opt. 35, 3829–3834 (1996).
[CrossRef] [PubMed]

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “Holographic-recording improvement in a bismuth silicon oxide crystal by the moving-grating technique,” Appl. Opt. 33, 7627–7633 (1994).
[CrossRef] [PubMed]

Z. Q. Wang, C. Soutar, W. A. Gillespie, C. M. Cartwright, “Real-time edge-enhanced object correlation using incoherent readout of photorefractive BSO,” Optik (Stuttgart) 93, 157–162 (1993).

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, C. Soutar, “Real-time computer-aided multiplexed optical intensity correlator using Fresnel holographic filters and a liquid crystal television,” Opt. Commun. 86, 19–24 (1991).
[CrossRef]

Grunnet-Jensen, A.

L. Solymar, D. J. Webb, A. Grunnet-Jensen, “The materials equations,” in The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996), Chap. 5, p. 182.

Hamel de Monchenault, G.

G. Hamel de Monchenault, J. P. Huignard, “Two-wave mixing with time modulated signal in Bi12SiO20 theory and application to homodyne wave front detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

G. Hamel de Monchenault, B. Loiseaux, J. P. Huignard, “Amplification of high bandwidth signals through two-wave mixing in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 50, 1794–1796 (1987).
[CrossRef]

Harris, M. T.

Herriau, J. P.

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, “Generation of spatial subharmonics by two-wave mixing in a nonlinear photorefractive medium,” J. Appl. Phys. 63, 5660–5663 (1988).
[CrossRef]

J. P. Huignard, J. P. Herriau, “Real-time coherent object edge reconstruction with Bi12SiO20 crystals,” Appl. Opt. 17, 2671–2672 (1978).
[CrossRef] [PubMed]

Homer, J. L.

Huignard, J. P.

H. Rajbenbach, S. Bann, P. Réfrégier, P. Joffre, J. P. Huignard, H. S. Buchkremer, A. S. Jensen, E. Rasmussen, K. H. Brenner, G. Lohman, “Compact photorefractive correlator for robotic applications,” Appl. Opt. 31, 5666–5674 (1992).
[CrossRef] [PubMed]

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, “Generation of spatial subharmonics by two-wave mixing in a nonlinear photorefractive medium,” J. Appl. Phys. 63, 5660–5663 (1988).
[CrossRef]

G. Hamel de Monchenault, J. P. Huignard, “Two-wave mixing with time modulated signal in Bi12SiO20 theory and application to homodyne wave front detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

G. Hamel de Monchenault, B. Loiseaux, J. P. Huignard, “Amplification of high bandwidth signals through two-wave mixing in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 50, 1794–1796 (1987).
[CrossRef]

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefrective Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

H. Rajbenbach, J. P. Huignard, Ph. Réfrégier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi12SiO20 crystals,” Opt. Lett. 9, 558–560 (1984).
[CrossRef] [PubMed]

H. Rajbenbach, J. P. Huignard, B. Loiseaux, “Spatial frequency dependence of energy transfer in two-wave mixing experiments with BSO crystals,” Opt. Commun. 48, 247–252 (1983).
[CrossRef]

J. P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

J. P. Huignard, J. P. Herriau, “Real-time coherent object edge reconstruction with Bi12SiO20 crystals,” Appl. Opt. 17, 2671–2672 (1978).
[CrossRef] [PubMed]

Imbert, B.

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, “Generation of spatial subharmonics by two-wave mixing in a nonlinear photorefractive medium,” J. Appl. Phys. 63, 5660–5663 (1988).
[CrossRef]

Jahan, S. R.

Jensen, A. S.

Joffre, P.

Karim, M. A.

Larkin, J. L.

Lee, S. H.

Lohman, G.

Loiseaux, B.

G. Hamel de Monchenault, B. Loiseaux, J. P. Huignard, “Amplification of high bandwidth signals through two-wave mixing in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 50, 1794–1796 (1987).
[CrossRef]

H. Rajbenbach, J. P. Huignard, B. Loiseaux, “Spatial frequency dependence of energy transfer in two-wave mixing experiments with BSO crystals,” Opt. Commun. 48, 247–252 (1983).
[CrossRef]

Ma, J.

Magde, K. M.

Mallick, S.

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, “Generation of spatial subharmonics by two-wave mixing in a nonlinear photorefractive medium,” J. Appl. Phys. 63, 5660–5663 (1988).
[CrossRef]

Marrakchi, A.

J. P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

Mu, G. G.

G. G. Mu, Z. Q. Wang, W. Z. Chen, “Optical intensity correlator with high discrimination,” Optik (Stuttgart) 84, 23–27 (1990).

Rajbenbach, H.

H. Rajbenbach, S. Bann, P. Réfrégier, P. Joffre, J. P. Huignard, H. S. Buchkremer, A. S. Jensen, E. Rasmussen, K. H. Brenner, G. Lohman, “Compact photorefractive correlator for robotic applications,” Appl. Opt. 31, 5666–5674 (1992).
[CrossRef] [PubMed]

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefrective Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

H. Rajbenbach, J. P. Huignard, Ph. Réfrégier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi12SiO20 crystals,” Opt. Lett. 9, 558–560 (1984).
[CrossRef] [PubMed]

H. Rajbenbach, J. P. Huignard, B. Loiseaux, “Spatial frequency dependence of energy transfer in two-wave mixing experiments with BSO crystals,” Opt. Commun. 48, 247–252 (1983).
[CrossRef]

Rasmussen, E.

Réfrégier, P.

Réfrégier, Ph.

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefrective Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

H. Rajbenbach, J. P. Huignard, Ph. Réfrégier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi12SiO20 crystals,” Opt. Lett. 9, 558–560 (1984).
[CrossRef] [PubMed]

Solymar, L.

L. B. Au, L. Solymar, “Higher harmonic gratings in photorefractive materials at large modulation with moving fringes,” J. Opt. Soc. Am. A 7, 1554–1561 (1990).
[CrossRef]

L. B. Au, L. Solymar, “Space-charge field in photorefractive materials at large modulation,” Opt. Lett. 13, 660–662 (1988).
[CrossRef] [PubMed]

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefrective Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

L. Solymar, D. J. Webb, A. Grunnet-Jensen, “The materials equations,” in The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996), Chap. 5, p. 182.

Soutar, C.

Z. Q. Wang, C. Soutar, W. A. Gillespie, C. M. Cartwright, “Real-time edge-enhanced object correlation using incoherent readout of photorefractive BSO,” Optik (Stuttgart) 93, 157–162 (1993).

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, C. Soutar, “Real-time computer-aided multiplexed optical intensity correlator using Fresnel holographic filters and a liquid crystal television,” Opt. Commun. 86, 19–24 (1991).
[CrossRef]

Taketomi, Y.

Vainos, N. A.

N. A. Vainos, R. W. Eason, “Real time edge enhancement by active spatial filtering via five wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

Wang, Z. Q.

Z. Q. Wang, C. M. Cartwright, W. A. Gillespie, N. J. Cook, “Effects of optical bias on moving gratings in bismuth silicon oxide at large fringe modulation,” Appl. Opt. 35, 3829–3834 (1996).
[CrossRef] [PubMed]

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “Holographic-recording improvement in a bismuth silicon oxide crystal by the moving-grating technique,” Appl. Opt. 33, 7627–7633 (1994).
[CrossRef] [PubMed]

Z. Q. Wang, C. Soutar, W. A. Gillespie, C. M. Cartwright, “Real-time edge-enhanced object correlation using incoherent readout of photorefractive BSO,” Optik (Stuttgart) 93, 157–162 (1993).

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, C. Soutar, “Real-time computer-aided multiplexed optical intensity correlator using Fresnel holographic filters and a liquid crystal television,” Opt. Commun. 86, 19–24 (1991).
[CrossRef]

G. G. Mu, Z. Q. Wang, W. Z. Chen, “Optical intensity correlator with high discrimination,” Optik (Stuttgart) 84, 23–27 (1990).

Webb, D. J.

L. Solymar, D. J. Webb, A. Grunnet-Jensen, “The materials equations,” in The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996), Chap. 5, p. 182.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

G. Hamel de Monchenault, B. Loiseaux, J. P. Huignard, “Amplification of high bandwidth signals through two-wave mixing in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 50, 1794–1796 (1987).
[CrossRef]

J. Appl. Phys. (3)

S. Mallick, B. Imbert, H. Ducollet, J. P. Herriau, J. P. Huignard, “Generation of spatial subharmonics by two-wave mixing in a nonlinear photorefractive medium,” J. Appl. Phys. 63, 5660–5663 (1988).
[CrossRef]

G. Hamel de Monchenault, J. P. Huignard, “Two-wave mixing with time modulated signal in Bi12SiO20 theory and application to homodyne wave front detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two-beam coupling in photorefrective Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

J. P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

H. Rajbenbach, J. P. Huignard, B. Loiseaux, “Spatial frequency dependence of energy transfer in two-wave mixing experiments with BSO crystals,” Opt. Commun. 48, 247–252 (1983).
[CrossRef]

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, C. Soutar, “Real-time computer-aided multiplexed optical intensity correlator using Fresnel holographic filters and a liquid crystal television,” Opt. Commun. 86, 19–24 (1991).
[CrossRef]

N. A. Vainos, R. W. Eason, “Real time edge enhancement by active spatial filtering via five wave mixing in photorefractive BSO,” Opt. Commun. 59, 167–172 (1986).
[CrossRef]

Opt. Lett. (4)

Optik (Stuttgart) (2)

Z. Q. Wang, C. Soutar, W. A. Gillespie, C. M. Cartwright, “Real-time edge-enhanced object correlation using incoherent readout of photorefractive BSO,” Optik (Stuttgart) 93, 157–162 (1993).

G. G. Mu, Z. Q. Wang, W. Z. Chen, “Optical intensity correlator with high discrimination,” Optik (Stuttgart) 84, 23–27 (1990).

Other (1)

L. Solymar, D. J. Webb, A. Grunnet-Jensen, “The materials equations,” in The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996), Chap. 5, p. 182.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental arrangement for edge-enhanced correlation by use of moving gratings.

Fig. 2
Fig. 2

(a) Three-dimensional surface and (b) the histogram of the modulus of the Fourier power spectrum for the English letter O.

Fig. 3
Fig. 3

Histogram of the fringe modulation of the Fourier transform hologram of the English letter O.

Fig. 4
Fig. 4

Experimental results for the optimum fringe velocity versus the fringe modulation: Λ = 20 μm, E 0 = 6.25 kV/cm, |R(α, β)|2 = 7.5 mW/cm2.

Fig. 5
Fig. 5

Experimental results for the enhancement of the diffraction efficiency versus the fringe modulation with a fixed fringe velocity: v = 150 μm/s, Λ = 20 μm, E 0 = 6.25 kV/cm, |R(α, β)|2 = 7.5 mW/cm2.

Fig. 6
Fig. 6

Linear reconstruction of the Fourier transform holograms of three different objects: (a) The English letter O. (b) A binary rectangular object. (c) A binary airplane.

Fig. 7
Fig. 7

Edge-enhanced reconstruction of the Fourier transform holograms of (a) the letter O, (b) a binary rectangular object, and (c) a binary airplane corresponding to Figs. 6(a)6(c), respectively, by use of moving gratings: v = 25 μm/s, Λ = 20 μm, E 0 = 6.25 kV/cm, |R(α, β)|2 = 1.2 mW/cm2.

Fig. 8
Fig. 8

Horizontal cross section of the linear reconstruction of the binary rectangle [Fig. 6(b)].

Fig. 9
Fig. 9

Horizontal cross section of the edge-enhanced reconstruction of the binary rectangle by use of moving gratings [Fig. 7(b)].

Fig. 10
Fig. 10

Autocorrelation results for the letter O: Λ = 20 μm, E 0 = 6.25 kV/cm, |R(α, β)|2 = 1.2 mW/cm2: (a) Without moving gratings. (b) With moving gratings.

Fig. 11
Fig. 11

Three-dimensional plots of the autocorrelations corresponding to Fig. 10: (a) Without moving gratings. (b) With moving gratings.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

m α ,   β = 2 | O α ,   β | R α ,   β | | O α ,   β | 2 + | R α ,   β | 2 ,
v = 2 κ U M Λ   cos ϑ 0 λ t ,
v = N Λ t ,

Metrics