Abstract

The tracking-error signal generated in differential phase detection (DPD) is theoretically analyzed and numerically simulated. Experimental measurements of the DPD signal versus the tracking offset obtained on compact read-only and phase-change disks are also reported. The signal is sensitive to the geometry of the marks, intersymbol interference along the track, and cross-track cross talk. A characteristic parameter is introduced to relate the DPD signal to the reflectivities of the mark and the spacer. For read-only disks such as CD-ROM and DVD-ROM, the magnitude of the DPD signal does not seem to depend on the reflectivity of the disks, nor does it depend on the pit depth. As for the influence of the various aberrations on the DPD signal, coma in the cross-track direction is shown to give rise to significant tracking offset, whereas defocus and spherical aberrations reduce the magnitude of the DPD signal appreciably.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bouwhuis, P. Burgstede, “Optical scanning system of the Philips VLP record player,” Philips Tech. Rev. 33, 186–189 (1973).
  2. C. Bricot, J. C. Lehureau, C. Peuch, F. le Carvennec, “Optical readout of videodisc,” IEEE Trans. Commun. Electron. CE-22, 304–308 (1976).
    [CrossRef]
  3. J. J. M. Braat, G. Bouwhuis, “Position sensing in video disk readout,” Appl. Opt. 17, 2013–2021 (1978).
    [CrossRef] [PubMed]
  4. S. L. DeVore, “Radial error signal simulation for optical disk drivers,” Appl. Opt. 25, 4001–4006 (1986).
    [CrossRef] [PubMed]
  5. M. Mansuripur, “Analysis of astigmatic focusing and push–pull tracking error signals in magnetooptical disk systems,” Appl. Opt. 26, 3981–3986 (1987).
    [CrossRef] [PubMed]
  6. K. C. Pohlmann, The Compact Disk Handbook (A-R Editions, Madison, Wisc., 1992), Chap. 4.
  7. S. Y. Jeong, J. B. Kim, J. Y. Kim, “Analysis of DPD signal offset caused by optical asymmetry,” in Optical Data Storage ’97, H. Birecki, J. Z. Kwiecier, eds., Proc. SPIE3109, 68–72 (1997).
  8. The computer program diffract is commercially available from MM Research, Inc., Tucson, Ariz. 85718.The theoretical basis of this program is described in the following papers: M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6, 786–805 (1989); “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys.67, 6466–6475 (1990).
  9. T. D. Milster, Z. Chen, E. P. Walker, M. T. Tuell, E. C. Gage, “Optical data storage readout with quadrant pupil detection,” Appl. Opt. 35, 2471–2476 (1996).
    [CrossRef] [PubMed]
  10. H. H. Hopkins, “Diffraction theory of laser read-out systems for optical video discs,” J. Opt. Soc. Am. 69, 4–24 (1979).
    [CrossRef]
  11. T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, R. Imanaka, “High-sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y.-S. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
    [CrossRef]
  12. M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296–9303 (1997).
    [CrossRef]

1997

1996

1987

1986

1979

1978

1976

C. Bricot, J. C. Lehureau, C. Peuch, F. le Carvennec, “Optical readout of videodisc,” IEEE Trans. Commun. Electron. CE-22, 304–308 (1976).
[CrossRef]

1973

G. Bouwhuis, P. Burgstede, “Optical scanning system of the Philips VLP record player,” Philips Tech. Rev. 33, 186–189 (1973).

Akiyama, T.

T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, R. Imanaka, “High-sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y.-S. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
[CrossRef]

Bartlett, C.

Bates, K.

Bletscher, W.

Bouwhuis, G.

J. J. M. Braat, G. Bouwhuis, “Position sensing in video disk readout,” Appl. Opt. 17, 2013–2021 (1978).
[CrossRef] [PubMed]

G. Bouwhuis, P. Burgstede, “Optical scanning system of the Philips VLP record player,” Philips Tech. Rev. 33, 186–189 (1973).

Braat, J. J. M.

Bricot, C.

C. Bricot, J. C. Lehureau, C. Peuch, F. le Carvennec, “Optical readout of videodisc,” IEEE Trans. Commun. Electron. CE-22, 304–308 (1976).
[CrossRef]

Burgstede, P.

G. Bouwhuis, P. Burgstede, “Optical scanning system of the Philips VLP record player,” Philips Tech. Rev. 33, 186–189 (1973).

Chen, Z.

Cheng, L.

Chung, C. S.

DeVore, S. L.

Erwin, J. K.

Gage, E. C.

Gerber, R. E.

Goodman, T. D.

Hopkins, H. H.

Imanaka, R.

T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, R. Imanaka, “High-sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y.-S. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
[CrossRef]

Isomura, H.

T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, R. Imanaka, “High-sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y.-S. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
[CrossRef]

Jeong, S. Y.

S. Y. Jeong, J. B. Kim, J. Y. Kim, “Analysis of DPD signal offset caused by optical asymmetry,” in Optical Data Storage ’97, H. Birecki, J. Z. Kwiecier, eds., Proc. SPIE3109, 68–72 (1997).

Kim, J. B.

S. Y. Jeong, J. B. Kim, J. Y. Kim, “Analysis of DPD signal offset caused by optical asymmetry,” in Optical Data Storage ’97, H. Birecki, J. Z. Kwiecier, eds., Proc. SPIE3109, 68–72 (1997).

Kim, J. Y.

S. Y. Jeong, J. B. Kim, J. Y. Kim, “Analysis of DPD signal offset caused by optical asymmetry,” in Optical Data Storage ’97, H. Birecki, J. Z. Kwiecier, eds., Proc. SPIE3109, 68–72 (1997).

Kim, S. G.

Kim, T.

le Carvennec, F.

C. Bricot, J. C. Lehureau, C. Peuch, F. le Carvennec, “Optical readout of videodisc,” IEEE Trans. Commun. Electron. CE-22, 304–308 (1976).
[CrossRef]

Lee, S. K.

Lehureau, J. C.

C. Bricot, J. C. Lehureau, C. Peuch, F. le Carvennec, “Optical readout of videodisc,” IEEE Trans. Commun. Electron. CE-22, 304–308 (1976).
[CrossRef]

Mansuripur, M.

Milster, T. D.

Ohta, T.

T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, R. Imanaka, “High-sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y.-S. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
[CrossRef]

Peng, C.

Peuch, C.

C. Bricot, J. C. Lehureau, C. Peuch, F. le Carvennec, “Optical readout of videodisc,” IEEE Trans. Commun. Electron. CE-22, 304–308 (1976).
[CrossRef]

Pohlmann, K. C.

K. C. Pohlmann, The Compact Disk Handbook (A-R Editions, Madison, Wisc., 1992), Chap. 4.

Tuell, M. T.

Walker, E. P.

Yoshioka, K.

T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, R. Imanaka, “High-sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y.-S. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
[CrossRef]

Appl. Opt.

IEEE Trans. Commun. Electron.

C. Bricot, J. C. Lehureau, C. Peuch, F. le Carvennec, “Optical readout of videodisc,” IEEE Trans. Commun. Electron. CE-22, 304–308 (1976).
[CrossRef]

J. Opt. Soc. Am.

Philips Tech. Rev.

G. Bouwhuis, P. Burgstede, “Optical scanning system of the Philips VLP record player,” Philips Tech. Rev. 33, 186–189 (1973).

Other

K. C. Pohlmann, The Compact Disk Handbook (A-R Editions, Madison, Wisc., 1992), Chap. 4.

S. Y. Jeong, J. B. Kim, J. Y. Kim, “Analysis of DPD signal offset caused by optical asymmetry,” in Optical Data Storage ’97, H. Birecki, J. Z. Kwiecier, eds., Proc. SPIE3109, 68–72 (1997).

The computer program diffract is commercially available from MM Research, Inc., Tucson, Ariz. 85718.The theoretical basis of this program is described in the following papers: M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6, 786–805 (1989); “Analysis of multilayer thin-film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices,” J. Appl. Phys.67, 6466–6475 (1990).

T. Ohta, K. Yoshioka, H. Isomura, T. Akiyama, R. Imanaka, “High-sensitivity overwritable phase-change optical disk for PD systems,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y.-S. Tyan, eds., Proc. SPIE2514, 302–311 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic diagram of the readout system used in the simulations: PBS, polarizing beam splitter; QWP, quarter-wave plate. (b) Rotation of the irradiance pattern within the exit pupil of the focused lens as an off-centered focused spot scans along a data mark.

Fig. 2
Fig. 2

Sum of the signal from quadrants 1 and 3 and that from quadrants 2 and 4 as the focused spot scans over a mark. The spot is scanned (a) along the top edge of the mark, Δξ > 0; (b) along the center of the mark, Δξ = 0; and (c) along the bottom of the mark, Δξ < 0. A periodic sequence of marks of 50% of the duty cycle was placed on the track. The mark and the space have the same reflectance (75%). The marks are 0.8 μm long, 0.35 μm wide, and 0.166λ deep. Circles, focused spots; rectangles, marks.

Fig. 3
Fig. 3

Computed variations of the DPD signal Δξ: (a) Δξ versus the mark width when the mark is fixed at 0.8 μm. (b) Δξ versus the mark length when the mark width is fixed at 0.35 μm. A periodic pattern of marks is assumed along the track, with no mark present on the adjacent tracks. The focused spot is a half-mark width off track. λ = 0.65 μm; NA = 0.6.

Fig. 4
Fig. 4

Effect of cross talk on the DPD signal Δξ: λ = 0.65 μm; NA = 0.6; track pitch, 0.74 μm; mark length, 0.8 μm; mark width, 0.35 μm; center-to-center spacing between adjacent marks along the track, 1.6 μm; deviation of the focused spot from the track center, v 0 = 0.15 μm.

Fig. 5
Fig. 5

Effects of coma and astigmatism on the two diagonal signals S 13 and S 24 as the focused spot scans over a mark. (a) The spot is centered on the track, and 0.25λ coma at 45° to the track exists in the beam. (b) The spot is radially 0.15 μm off track, and 0.25λ coma at 45° to the track exists in the beam. (c) The spot is centered on the track, and 0.25λ astigmatism at 45° to the track exists in the beam. (d) The spot is radially 0.15 μm off track, and 0.25λ astigmatism at 45° to the track exists in the beam. λ = 0.65 μm; NA = 0.6; mark length, L = 0.8 μm; mark width, W = 0.35 μm; mark depth, 0.1666λ; center-to-center spacing between two marks, 1.6 μm; reflectivities, |r a |2 = |r c |2 = 75%. There is no mark in the adjacent tracks.

Fig. 6
Fig. 6

Plots of I 1, I 2, I 3, I 4, I 1 - I 2, and I 3 - I 4 as functions of u 0. In the calculation, λ = 0.65 μm; NA = 0.5; mark length, L = 1 μm; mark width, W = 0.6 μm; v 0 = 0.35 μm.

Fig. 7
Fig. 7

Computed variation of the DPD signal Δξ versus the characteristic parameter p. λ = 0.65 μm; objective lens, NA = 0.6; mark length, L = 0.8 μm; mark width, W = 0.35 μm; spot’s off-track distance, v 0 = 0.17 μm.

Fig. 8
Fig. 8

Time interval Δt between S 13 and S 24 versus the tracking offset for pits. Filled circles, experimental data for data pits on a CD-ROM disk; open circles, format pits on a rewritable phase-change (PD) disk at a radius of roughly 23 mm. Solid curves marked a and b, simulation results. λ = 0.69 μm; objective lens, NA = 0.6; track pitch, 1.6 μm; mark width, W = 0.5 μm. For curve a, the mark length is L = 0.83 μm (minimum pit for a CD-ROM) and the center-to-center spacing between marks is 1.66 μm; for curve b, the mark length is L = 2.1 μm and the center-to-center spacing between marks is 2.7 μm.

Fig. 9
Fig. 9

Time interval Δt between S 13 and S 24 versus the tracking offset for data marks on a phase-change disk. The linear track velocity was approximately 4.4 m/s. The solid curve was obtained by computer simulation. Filled circles represent random marks written by a phase-change/CD-ROM drive; open circles represent the 2.5-MHz tone recorded by the dynamic tester. In the simulation, λ = 0.69 μm; NA = 0.6; track pitch, 1.2 μm; mark width, W = 0.6 μm; |r c | = 0.52; |r a | = 0.24; ϕ = π/4.

Tables (1)

Tables Icon

Table 1 Effects of 0.25λ of Primary Defocus (Curvature), Spherical Abberation, Coma, and Astigmatism on the Magnitude of the DPD Signal Δξ

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

u = NA / λ ξ ,     v = NA / λ η ,
x = X / h ,     y = Y / h ,
r u ,   v = r a u - u 0 ,   v - v 0 S r c otherwise .
F r u ,   v = exp - i 2 π f u u 0 + f v v 0 r c δ f u δ f v + r a - r c m f u ,   f v ,
m f u ,   f v = S d u d v   exp - i 2 π f u u + f v v .
A 2 x ,   y = 1 π circ x 2 + y 2 r c + r a - r c F x ,   y ,
F x ,   y = x 2 + y 2 1 / 2 1 d x d y m x - x ,   y - y × exp - i 2 π u 0 x - x + v 0 y - y .
S 13 = 0.5 | r c | 2 + | r a - r c | 2 π     | F x ,   y | 2 + | F - x ,   - y | 2 d x d y + r c r a - r c * π     F * x ,   y + F * - x ,   - y d x d y + r c * r a - r c π     F x ,   y + F - x ,   - y d x d y ,
S 24 = 0.5 | r c | 2 + | r a - r c | 2 π     | F - x ,   y | 2 + | F x ,   - y | 2 d x d y + r c r a - r c * π     F * - x ,   y + F * x ,   - y d x d y + r c * r a - r c π     F - x ,   y + F x ,   - y d x d y .
S 13 = 0.5 | r c | 2 + 2 | r a - r c | 2 π   I 1 + 2 r c * r a - r c + r c r a - r c * π   I 2 ,
S 24 = 0.5 | r c | 2 + 2 | r a - r c | 2 π   I 3 + 2 r c r a - r c * + r c * r a - r c π   I 4 ,
I 1 =   | F x ,   y | 2 d x d y ,
I 2 = 1 / 2     F x ,   y + F - x ,   - y d x d y ,
I 3 =   | F - x ,   y | 2 d x d y ,
I 4 = 1 / 2     F - x ,   y + F x ,   - y d x d y .
S 13 = 0.5 | r c | 2 - 8 | r c | 2 sin 2 ϕ / 2 π I 2 - I 1 ,
S 24 = 0.5 | r c | 2 - 8 | r c | 2 sin 2 ϕ / 2 π I 4 - I 3 ,
p = | r a - r c | 2 / r c r a - r c * + r c * r a - r c ,
S 13 = 0.5 | r c | 2 + 2 r c * r a - r c + r c r a - r c * π × p × I 1 + I 2 ,
S 24 = 0.5 | r c | 2 + 2 r c * r a - r c + r c r a - r c * π × p × I 3 + I 4 .
I 1 A   cos a u 0 + Δ ξ 1 / 2 + A 0 ,
I 2 B   cos a u 0 + Δ ξ 2 / 2 + B 0 ,
I 3 A   cos a u 0 - Δ ξ 1 / 2 + A 0 ,
I 4 B   cos a u 0 - Δ ξ 2 / 2 + B 0 ,
Δ ξ - 2 a tan - 1 × pA   sin a Δ ξ 1 / 2 + B   sin a Δ ξ 2 / 2 pA   cos a Δ ξ 1 / 2 + B   cos a Δ ξ 2 / 2 sgn p ,

Metrics