Abstract

A simulation and experimental investigation of a recently proposed, compact, phase-conjugating correlator is undertaken. The effects of noise and other distortions in the input image and in the correlator filter plane are considered. As with other phase-only designs, the phase-conjugating correlator is sensitive to distortion of the input image while being robust in the presence of filter-plane distortions; this robustness is enhanced by the phase-conjugating property of the design.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
    [CrossRef]
  2. M. Duelli, A. R. Pourzand, N. Collings, R. Dandliker, “Pure phase correlator with photorefractive filter memory,” Opt. Lett. 22, 87–89 (1997).
    [CrossRef] [PubMed]
  3. J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).
    [CrossRef]
  4. J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
    [CrossRef] [PubMed]
  5. D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
    [CrossRef]
  6. A. R. Pourzand, M. Duelli, N. Collings, “Frequency plane filter performance assessment II,” BRITE-EURAM project RY1, Tech. Rep. T222, Doc. ref. RY1/TR/NCH/NC&AR&MDP961205 (European Commission, Brussels, Belgium, 1996), pp. 1–6.
  7. A. R. Pourzand, N. Collings, “Detailed experiments on phase modulating SLM characteristics,” BRITE-EURAM Project RY1, Tech. Rep. T213-1, Doc. ref. RY1/TR/NCH/NC&ARP950523 (European Commission, Brussels, Belgium, 1996), pp. 1–14.
  8. R. D. Juday, “Correlation with a spatial light modulator having phase and amplitude cross coupling,” Appl. Opt. 28, 4865–4869 (1989).
    [CrossRef] [PubMed]
  9. T. G. Slack, “Simulation of SLM degradation,” BRITE-EURAM Project RY1, Tech. Rep. T341, Doc. ref. RY1/TR/BAE/TS951020 (European Commission, Brussels, Belgium, 1995), pp. 1–60.

1997 (1)

1996 (2)

J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
[CrossRef] [PubMed]

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

1995 (1)

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).
[CrossRef]

1993 (1)

R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
[CrossRef]

1989 (1)

Budgett, D. M.

J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
[CrossRef] [PubMed]

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).
[CrossRef]

Chatwin, C. R.

J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
[CrossRef] [PubMed]

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).
[CrossRef]

R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
[CrossRef]

Collings, N.

M. Duelli, A. R. Pourzand, N. Collings, R. Dandliker, “Pure phase correlator with photorefractive filter memory,” Opt. Lett. 22, 87–89 (1997).
[CrossRef] [PubMed]

A. R. Pourzand, M. Duelli, N. Collings, “Frequency plane filter performance assessment II,” BRITE-EURAM project RY1, Tech. Rep. T222, Doc. ref. RY1/TR/NCH/NC&AR&MDP961205 (European Commission, Brussels, Belgium, 1996), pp. 1–6.

A. R. Pourzand, N. Collings, “Detailed experiments on phase modulating SLM characteristics,” BRITE-EURAM Project RY1, Tech. Rep. T213-1, Doc. ref. RY1/TR/NCH/NC&ARP950523 (European Commission, Brussels, Belgium, 1996), pp. 1–14.

Dandliker, R.

Duelli, M.

M. Duelli, A. R. Pourzand, N. Collings, R. Dandliker, “Pure phase correlator with photorefractive filter memory,” Opt. Lett. 22, 87–89 (1997).
[CrossRef] [PubMed]

A. R. Pourzand, M. Duelli, N. Collings, “Frequency plane filter performance assessment II,” BRITE-EURAM project RY1, Tech. Rep. T222, Doc. ref. RY1/TR/NCH/NC&AR&MDP961205 (European Commission, Brussels, Belgium, 1996), pp. 1–6.

Juday, R. D.

Pourzand, A. R.

M. Duelli, A. R. Pourzand, N. Collings, R. Dandliker, “Pure phase correlator with photorefractive filter memory,” Opt. Lett. 22, 87–89 (1997).
[CrossRef] [PubMed]

A. R. Pourzand, M. Duelli, N. Collings, “Frequency plane filter performance assessment II,” BRITE-EURAM project RY1, Tech. Rep. T222, Doc. ref. RY1/TR/NCH/NC&AR&MDP961205 (European Commission, Brussels, Belgium, 1996), pp. 1–6.

A. R. Pourzand, N. Collings, “Detailed experiments on phase modulating SLM characteristics,” BRITE-EURAM Project RY1, Tech. Rep. T213-1, Doc. ref. RY1/TR/NCH/NC&ARP950523 (European Commission, Brussels, Belgium, 1996), pp. 1–14.

Scott, B. F.

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
[CrossRef] [PubMed]

R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
[CrossRef]

Sharp, J. H.

J. H. Sharp, D. M. Budgett, C. R. Chatwin, B. F. Scott, “High-speed, acousto-optically addressed optical memory,” Appl. Opt. 35, 2399–2402 (1996).
[CrossRef] [PubMed]

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).
[CrossRef]

Slack, T. G.

T. G. Slack, “Simulation of SLM degradation,” BRITE-EURAM Project RY1, Tech. Rep. T341, Doc. ref. RY1/TR/BAE/TS951020 (European Commission, Brussels, Belgium, 1995), pp. 1–60.

Tang, P. C.

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).
[CrossRef]

Tang, P. E.

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

Wang, R. K.

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

Young, R. C. D.

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

D. M. Budgett, P. E. Tang, J. H. Sharp, C. R. Chatwin, R. C. D. Young, R. K. Wang, B. F. Scott, “Parallel pixel processing using programmable gate arrays,” Electron. Lett. 32, 1557–1559 (1996).
[CrossRef]

Opt. Eng. (1)

R. C. D. Young, C. R. Chatwin, B. F. Scott, “High-speed hybrid optical digital correlator system,” Opt. Eng. 32, 2608–2615 (1993).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

J. H. Sharp, D. M. Budgett, P. C. Tang, C. R. Chatwin, “An automated recording system for page oriented volume holographic memories,” Rev. Sci. Instrum. 66, 1–4 (1995).
[CrossRef]

Other (3)

T. G. Slack, “Simulation of SLM degradation,” BRITE-EURAM Project RY1, Tech. Rep. T341, Doc. ref. RY1/TR/BAE/TS951020 (European Commission, Brussels, Belgium, 1995), pp. 1–60.

A. R. Pourzand, M. Duelli, N. Collings, “Frequency plane filter performance assessment II,” BRITE-EURAM project RY1, Tech. Rep. T222, Doc. ref. RY1/TR/NCH/NC&AR&MDP961205 (European Commission, Brussels, Belgium, 1996), pp. 1–6.

A. R. Pourzand, N. Collings, “Detailed experiments on phase modulating SLM characteristics,” BRITE-EURAM Project RY1, Tech. Rep. T213-1, Doc. ref. RY1/TR/NCH/NC&ARP950523 (European Commission, Brussels, Belgium, 1996), pp. 1–14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Correlator design: SF, spatial filter and point stop; L, lens; BS, beam splitter.

Fig. 2
Fig. 2

Image of the test component in the reference position of a 0° in-plane rotation angle.

Fig. 3
Fig. 3

Isometric plot of the experimental autocorrelation.

Fig. 4
Fig. 4

Variation of the CPH with the intensity noise in the input scene.

Fig. 5
Fig. 5

Dependence of the calculated CPH on the scaling error.

Fig. 6
Fig. 6

Isometric plot of the experimental (a) autocorrelation and (b) cross correlation with a 5% scale increase (10× scale).

Fig. 7
Fig. 7

Isometric plot of the experimental (a) autocorrelation and (b) cross correlation for a 1° rotation of the test component (4× scale).

Fig. 8
Fig. 8

Dependence of the CPH on the translation of the image in the input plane.

Fig. 9
Fig. 9

Calculated dependence of the CPH on the misalignment of the reconstructed FT and SLM.

Fig. 10
Fig. 10

Calculated dependence of the CPH on the pixel amplitude noise.

Fig. 11
Fig. 11

Calculated dependence of the CPH on the SLM phase noise.

Fig. 12
Fig. 12

Experimental dependence of the CPH on the SLM phase noise.

Fig. 13
Fig. 13

Calculated dependence of the CPH on the SLM phase noise with phase quantization added.

Fig. 14
Fig. 14

Experimental dependence of the CPH on the SLM phase noise with phase quantization added.

Fig. 15
Fig. 15

Experimental dependence of the CPH on the SLM phase noise with intensity noise in the input image added.

Fig. 16
Fig. 16

Calculated dependence of the CPH on the SLM phase quantization.

Fig. 17
Fig. 17

Experimental dependence of the CPH on the SLM phase quantization.

Metrics