Abstract

A new spatial light modulator that uses the electroabsorption and the electro-optic effects in a GaAs single crystal is proposed. The device has the same structure as a Pockels readout optical modulator and can be operated at a frame rate higher than 500 Hz. When the electroabsorption and the electro-optic effects are combined, the dynamic range (contrast ratio) becomes larger than that which results when either effect is used singly. It was experimentally confirmed that the modulator has a high contrast ratio (greater than 2000:1), high sensitivity, and consequently large γ characteristics.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, M. Mitsue, T. Minemoto, “Method for multilevel threshold of binarization in a hybrid joint Fourier-transform correlator,” Appl. Opt. 32, 5786–5788 (1993).
    [CrossRef] [PubMed]
  2. T. Minemoto, S. Numata, K. Miyamoto, “Optical parallel logic gate using a spatial light modulator with the Pockels effect: implementation using three PROM devices,” Appl. Opt. 25, 948–955 (1986).
    [CrossRef] [PubMed]
  3. H. Yamazaki, T. Matsunaga, S. Fukushima, T. Kurokawa, “4 × 1204 holographic switching with an optically addressed spatial light modulator,” Appl. Opt. 36, 3063–3069 (1997).
    [CrossRef] [PubMed]
  4. N. Hashimoto, S. Morokawa, K. Kitamura, “Real-time holography using high resolution LCTV-SLM,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 291–302 (1991).
  5. T.-C. Poon, K. B. Doh, B. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
    [CrossRef]
  6. J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2521 (1990).
    [CrossRef] [PubMed]
  7. T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
    [CrossRef]
  8. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, T. Hara, “Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator,” Appl. Opt. 33, 2804–2811 (1994).
    [CrossRef] [PubMed]
  9. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
    [CrossRef] [PubMed]
  10. B. Javidi, J. L. Horner, “Multifunction nonlinear signal processor: deconvolution and correlation,” Opt. Eng. 28, 837–843 (1989).
    [CrossRef]
  11. B. Javidi, Q. Tang, D. A. Gregory, T. D. Hudson, “Experiments on nonlinear joint transform correlator using an optically addressed spatial light modulator in the Fourier plane,” Appl. Opt. 30, 1772–1776 (1991).
    [CrossRef] [PubMed]
  12. R. A. Sprague, P. Nisenson, “The PROM—a status report,” Opt. Eng. 17, 256–266 (1978).
    [CrossRef]
  13. Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).
  14. Y. Bitou, T. Minemoto, “Fast response PROM using GaAs single crystal,” in Spatial Light Modulators, G. Burdge, S. Esener, eds. Vol. 14 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 147–154.
  15. B. O. Seraphin, N. Bottka, “Franz–Keldysh effect of the refractive index in semiconductors,” Phys. Rev. 139, 560–565 (1965).
    [CrossRef]
  16. K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2207 (1963).
    [CrossRef]
  17. M. Balkanski, ed., Handbook on Semiconductors (North-Holland, Amsterdam, 1980), Vol. 2, pp. 140–150.
  18. T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
    [CrossRef]
  19. G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
    [CrossRef]
  20. R. H. Kingston, F. J. Leonberger, “Fourier transformation using an electroabsorptive CCD spatial light modulator,” IEEE J. Quantum. Electron. QE-19, 1443–1451 (1983).
    [CrossRef]
  21. T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4 μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
    [CrossRef]
  22. T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridized to silicon integrated circuits,” Appl. Opt. 35, 1180–1185 (1996).
    [CrossRef] [PubMed]
  23. Y. Bitou, H. Ohta, T. Minemoto, “High-speed and high-contrast spatial light modulator that uses electroabsorption in a GaAs single crystal,” Appl. Opt. 37, 1377–1385 (1998).
    [CrossRef]
  24. R. K. Willardson, A. C. Beer, eds., Semiconductors and Semimetals (Academic, San Diego, Calif., 1988), Vol. 26, pp. 102–110.
    [CrossRef]
  25. A. Alping, L. A. Coldren, “Electrorefraction in GaAs and InGaAsP and its application to phase modulators,” J. Appl. Phys. 61, 2430–2433 (1987).
    [CrossRef]
  26. A. Partovi, E. M. Garmire, “Band-edge photorefractivity in semiconductors: theory and experiment,” J. Appl. Phys. 69, 6885–6898 (1991).
    [CrossRef]
  27. K. Sayyah, A. Au, U. Efron, T. Yamazaki, “High resolution liquid-crystal-based spatial light modulator with a thin crystalline silicon photosubstrate structure,” Appl. Opt. 35, 5761–5764 (1996).
    [CrossRef] [PubMed]
  28. G. B. Cohen, R. Pogreb, K. Vinokur, D. Davidov, “Spatial light modulator based on a deformed-helix ferroelectric liquid crystal and a thin a-Si:H amorphous photoconductor,” Appl. Opt. 36, 455–459 (1997).
    [CrossRef] [PubMed]

1998 (1)

1997 (3)

1996 (4)

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).

T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridized to silicon integrated circuits,” Appl. Opt. 35, 1180–1185 (1996).
[CrossRef] [PubMed]

K. Sayyah, A. Au, U. Efron, T. Yamazaki, “High resolution liquid-crystal-based spatial light modulator with a thin crystalline silicon photosubstrate structure,” Appl. Opt. 35, 5761–5764 (1996).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

1991 (2)

1990 (1)

1989 (2)

B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
[CrossRef] [PubMed]

B. Javidi, J. L. Horner, “Multifunction nonlinear signal processor: deconvolution and correlation,” Opt. Eng. 28, 837–843 (1989).
[CrossRef]

1988 (1)

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4 μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

1987 (1)

A. Alping, L. A. Coldren, “Electrorefraction in GaAs and InGaAsP and its application to phase modulators,” J. Appl. Phys. 61, 2430–2433 (1987).
[CrossRef]

1986 (2)

T. Minemoto, S. Numata, K. Miyamoto, “Optical parallel logic gate using a spatial light modulator with the Pockels effect: implementation using three PROM devices,” Appl. Opt. 25, 948–955 (1986).
[CrossRef] [PubMed]

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

1983 (1)

R. H. Kingston, F. J. Leonberger, “Fourier transformation using an electroabsorptive CCD spatial light modulator,” IEEE J. Quantum. Electron. QE-19, 1443–1451 (1983).
[CrossRef]

1978 (1)

R. A. Sprague, P. Nisenson, “The PROM—a status report,” Opt. Eng. 17, 256–266 (1978).
[CrossRef]

1976 (1)

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

1965 (1)

B. O. Seraphin, N. Bottka, “Franz–Keldysh effect of the refractive index in semiconductors,” Phys. Rev. 139, 560–565 (1965).
[CrossRef]

1963 (1)

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2207 (1963).
[CrossRef]

Alping, A.

A. Alping, L. A. Coldren, “Electrorefraction in GaAs and InGaAsP and its application to phase modulators,” J. Appl. Phys. 61, 2430–2433 (1987).
[CrossRef]

Au, A.

Bitou, Y.

Y. Bitou, H. Ohta, T. Minemoto, “High-speed and high-contrast spatial light modulator that uses electroabsorption in a GaAs single crystal,” Appl. Opt. 37, 1377–1385 (1998).
[CrossRef]

Y. Bitou, T. Minemoto, “Fast response PROM using GaAs single crystal,” in Spatial Light Modulators, G. Burdge, S. Esener, eds. Vol. 14 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 147–154.

Bottka, N.

B. O. Seraphin, N. Bottka, “Franz–Keldysh effect of the refractive index in semiconductors,” Phys. Rev. 139, 560–565 (1965).
[CrossRef]

Bozler, C. O.

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

Chang, W. S. C.

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

Cohen, G. B.

Coldren, L. A.

A. Alping, L. A. Coldren, “Electrorefraction in GaAs and InGaAsP and its application to phase modulators,” J. Appl. Phys. 61, 2430–2433 (1987).
[CrossRef]

Davidov, D.

Doh, K. B.

T.-C. Poon, K. B. Doh, B. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Efron, U.

K. Sayyah, A. Au, U. Efron, T. Yamazaki, “High resolution liquid-crystal-based spatial light modulator with a thin crystalline silicon photosubstrate structure,” Appl. Opt. 35, 5761–5764 (1996).
[CrossRef] [PubMed]

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4 μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

Fukui, M.

Fukushima, S.

Garmire, E. M.

A. Partovi, E. M. Garmire, “Band-edge photorefractivity in semiconductors: theory and experiment,” J. Appl. Phys. 69, 6885–6898 (1991).
[CrossRef]

Gregory, D. A.

Hara, T.

Hashimoto, N.

N. Hashimoto, S. Morokawa, K. Kitamura, “Real-time holography using high resolution LCTV-SLM,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 291–302 (1991).

Honda, A.

Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).

Horner, J. L.

B. Javidi, J. L. Horner, “Multifunction nonlinear signal processor: deconvolution and correlation,” Opt. Eng. 28, 837–843 (1989).
[CrossRef]

Hsu, T. Y.

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4 μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

Hudson, T. D.

Ichioka, Y.

Ishikawa, J.

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Javidi, B.

Kingston, R. H.

R. H. Kingston, F. J. Leonberger, “Fourier transformation using an electroabsorptive CCD spatial light modulator,” IEEE J. Quantum. Electron. QE-19, 1443–1451 (1983).
[CrossRef]

Kitamura, K.

N. Hashimoto, S. Morokawa, K. Kitamura, “Real-time holography using high resolution LCTV-SLM,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 291–302 (1991).

Kobayashi, Y.

Kurokawa, T.

Lane, B.

Leonberger, F. J.

R. H. Kingston, F. J. Leonberger, “Fourier transformation using an electroabsorptive CCD spatial light modulator,” IEEE J. Quantum. Electron. QE-19, 1443–1451 (1983).
[CrossRef]

Martin, R.

Matsunaga, T.

Minemoto, T.

Y. Bitou, H. Ohta, T. Minemoto, “High-speed and high-contrast spatial light modulator that uses electroabsorption in a GaAs single crystal,” Appl. Opt. 37, 1377–1385 (1998).
[CrossRef]

Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Q. Zhan, M. Mitsue, T. Minemoto, “Method for multilevel threshold of binarization in a hybrid joint Fourier-transform correlator,” Appl. Opt. 32, 5786–5788 (1993).
[CrossRef] [PubMed]

T. Minemoto, S. Numata, K. Miyamoto, “Optical parallel logic gate using a spatial light modulator with the Pockels effect: implementation using three PROM devices,” Appl. Opt. 25, 948–955 (1986).
[CrossRef] [PubMed]

Y. Bitou, T. Minemoto, “Fast response PROM using GaAs single crystal,” in Spatial Light Modulators, G. Burdge, S. Esener, eds. Vol. 14 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 147–154.

Mitsue, M.

Miyamoto, K.

Mizukawa, H.

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Morokawa, S.

N. Hashimoto, S. Morokawa, K. Kitamura, “Real-time holography using high resolution LCTV-SLM,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 291–302 (1991).

Mukohzaka, N.

Nakagawa, J.

Nisenson, P.

R. A. Sprague, P. Nisenson, “The PROM—a status report,” Opt. Eng. 17, 256–266 (1978).
[CrossRef]

Numata, S.

Ohta, H.

Osugi, Y.

Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Partovi, A.

A. Partovi, E. M. Garmire, “Band-edge photorefractivity in semiconductors: theory and experiment,” J. Appl. Phys. 69, 6885–6898 (1991).
[CrossRef]

Pogreb, R.

Poon, T.-C.

T.-C. Poon, K. B. Doh, B. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Ritter, K. J.

Rossi, J. A.

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

Sayyah, K.

Schilling, B.

T.-C. Poon, K. B. Doh, B. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Seraphin, B. O.

B. O. Seraphin, N. Bottka, “Franz–Keldysh effect of the refractive index in semiconductors,” Phys. Rev. 139, 560–565 (1965).
[CrossRef]

Shinoda, K.

T.-C. Poon, K. B. Doh, B. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Sprague, R. A.

R. A. Sprague, P. Nisenson, “The PROM—a status report,” Opt. Eng. 17, 256–266 (1978).
[CrossRef]

Stillman, G. E.

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

Suzuki, Y.

T.-C. Poon, K. B. Doh, B. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Tang, Q.

Tanida, J.

Tharmalingam, K.

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2207 (1963).
[CrossRef]

Toyoda, H.

Van Eck, T. E.

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

Vinokur, K.

Walpita, L. M.

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

Wieder, H. H.

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

Wolte, C. M.

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

Worchesky, T. L.

Wu, M. H.

T.-C. Poon, K. B. Doh, B. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

Wu, W. Y.

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4 μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

Yagyu, E.

Yamazaki, H.

Yamazaki, T.

Yoshida, N.

Zhan, Q.

Appl. Opt. (11)

T. Minemoto, S. Numata, K. Miyamoto, “Optical parallel logic gate using a spatial light modulator with the Pockels effect: implementation using three PROM devices,” Appl. Opt. 25, 948–955 (1986).
[CrossRef] [PubMed]

B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
[CrossRef] [PubMed]

J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2521 (1990).
[CrossRef] [PubMed]

B. Javidi, Q. Tang, D. A. Gregory, T. D. Hudson, “Experiments on nonlinear joint transform correlator using an optically addressed spatial light modulator in the Fourier plane,” Appl. Opt. 30, 1772–1776 (1991).
[CrossRef] [PubMed]

Q. Zhan, M. Mitsue, T. Minemoto, “Method for multilevel threshold of binarization in a hybrid joint Fourier-transform correlator,” Appl. Opt. 32, 5786–5788 (1993).
[CrossRef] [PubMed]

N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, T. Hara, “Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator,” Appl. Opt. 33, 2804–2811 (1994).
[CrossRef] [PubMed]

G. B. Cohen, R. Pogreb, K. Vinokur, D. Davidov, “Spatial light modulator based on a deformed-helix ferroelectric liquid crystal and a thin a-Si:H amorphous photoconductor,” Appl. Opt. 36, 455–459 (1997).
[CrossRef] [PubMed]

Y. Bitou, H. Ohta, T. Minemoto, “High-speed and high-contrast spatial light modulator that uses electroabsorption in a GaAs single crystal,” Appl. Opt. 37, 1377–1385 (1998).
[CrossRef]

T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridized to silicon integrated circuits,” Appl. Opt. 35, 1180–1185 (1996).
[CrossRef] [PubMed]

K. Sayyah, A. Au, U. Efron, T. Yamazaki, “High resolution liquid-crystal-based spatial light modulator with a thin crystalline silicon photosubstrate structure,” Appl. Opt. 35, 5761–5764 (1996).
[CrossRef] [PubMed]

H. Yamazaki, T. Matsunaga, S. Fukushima, T. Kurokawa, “4 × 1204 holographic switching with an optically addressed spatial light modulator,” Appl. Opt. 36, 3063–3069 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

Electron. Lett. (1)

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4 μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

IEEE J. Quantum. Electron. (1)

R. H. Kingston, F. J. Leonberger, “Fourier transformation using an electroabsorptive CCD spatial light modulator,” IEEE J. Quantum. Electron. QE-19, 1443–1451 (1983).
[CrossRef]

J. Appl. Phys. (2)

A. Alping, L. A. Coldren, “Electrorefraction in GaAs and InGaAsP and its application to phase modulators,” J. Appl. Phys. 61, 2430–2433 (1987).
[CrossRef]

A. Partovi, E. M. Garmire, “Band-edge photorefractivity in semiconductors: theory and experiment,” J. Appl. Phys. 69, 6885–6898 (1991).
[CrossRef]

Opt. Eng. (2)

B. Javidi, J. L. Horner, “Multifunction nonlinear signal processor: deconvolution and correlation,” Opt. Eng. 28, 837–843 (1989).
[CrossRef]

R. A. Sprague, P. Nisenson, “The PROM—a status report,” Opt. Eng. 17, 256–266 (1978).
[CrossRef]

Opt. Rev. (2)

T.-C. Poon, K. B. Doh, B. Schilling, K. Shinoda, Y. Suzuki, M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
[CrossRef]

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Optics (1)

Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).

Phys. Rev. (2)

B. O. Seraphin, N. Bottka, “Franz–Keldysh effect of the refractive index in semiconductors,” Phys. Rev. 139, 560–565 (1965).
[CrossRef]

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2207 (1963).
[CrossRef]

Other (4)

M. Balkanski, ed., Handbook on Semiconductors (North-Holland, Amsterdam, 1980), Vol. 2, pp. 140–150.

Y. Bitou, T. Minemoto, “Fast response PROM using GaAs single crystal,” in Spatial Light Modulators, G. Burdge, S. Esener, eds. Vol. 14 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 147–154.

R. K. Willardson, A. C. Beer, eds., Semiconductors and Semimetals (Academic, San Diego, Calif., 1988), Vol. 26, pp. 102–110.
[CrossRef]

N. Hashimoto, S. Morokawa, K. Kitamura, “Real-time holography using high resolution LCTV-SLM,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 291–302 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Structure and (b) equivalent circuit of the device. C G and C I are the capacitances of the GaAs crystal plate and the glass insulator, respectively; R G is the resistance of the GaAs crystal plate.

Fig. 2
Fig. 2

Optical setup for combining the EA and the EO effects. F and S are the fast and the slow propagation axes, respectively, in the GaAs crystal plate.

Fig. 3
Fig. 3

Optical setup for SLM operation: L1, L2, lenses.

Fig. 4
Fig. 4

Sequential diagrams of the applied ac voltage and illumination of erasing, write-in, and readout lights.

Fig. 5
Fig. 5

Dependence of the optical transmission T EA and T on the amplitude V a of the applied ac voltage. The results were obtained under low readout light intensity, I r = 240 μW/cm2 (FWHM = 18 nm), with no write-in or erasing light (I w = I r = 0). The solid curve is the curve of Eq. (4) modified by Eq. (7) used for fitting.

Fig. 6
Fig. 6

Optical transmission T EO that is due to the EO effect versus the amplitude V a : optical transmission ratio T/ T EA derived from the experimental results shown in Fig. 5. The solid curve is the curve of Eq. (8) used for fitting, where V πD = 6.3 kV.

Fig. 7
Fig. 7

Optical transmission T EO that is due to the EO effect versus the rotation angle θ of the analyzer: optical transmission ratio T/ T EA derived from the experimental data measured as a function of θ. The results were obtained at V a = 2.4 and V a = 1.6 kV. The solid and dashed curves show the curves of Eq. (9) used for fitting at V a = 2.4 and V a = 1.6 kV, respectively.

Fig. 8
Fig. 8

Dependence of the optical transmissions T EA and T on the amplitude V a of the applied ac voltage in the SLM operating system. I r = 1.7 mW/cm2 (FWHM = 10 nm) and I e = 5 mW/cm2.

Fig. 9
Fig. 9

Sensitivity curves of the device: optical transmissions T EA and T versus the write-in light intensity I w .

Fig. 10
Fig. 10

Readout signals I o at (a) no applied ac voltage, (b) applied ac voltage V a = 4 kV and f = 500 Hz, and (c) the same applied ac voltage as (b) under a synchronously intermittent write-in light pulse with I w = 5 mW/cm2. The upper traces in (a) and (b) show the waveforms of externally applied ac voltages. There was illumination by uniform erasing light (I e = 5 mW/cm2) in (b) and (c). The unit of the horizontal axis is 1 ms/division in all cases.

Fig. 11
Fig. 11

Example of a readout image.

Fig. 12
Fig. 12

and operation of two images. Output images from the device when (a) only a vertically wide rectangle was written in and (b) only a horizontally wide rectangle was written in. The result of the and operation when the two images were simultaneously written in is shown in (c) and (d) by a photograph and by a three-dimensional plot of its intensity distribution, respectively.

Fig. 13
Fig. 13

Optical setup in reflection-mode operation: L1, L2, lenses; P.B.S., polarized beam splitter.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I o     I in   exp - 0 L   α E d x ,
T EA = I o E / I o 0 = exp - 0 L   Δ α E d x ,
Δ α E = α E - α 0 .
T EA = exp - Δ α E L .
n F = n 0 + Δ n ER - 1 / 2 n 0 3 r 41 E , n S = n 0 + Δ n ER + 1 / 2 n 0 3 r 41 E ,
T = T EA T EO = exp - Δ α E L cos 2 π / λ n S - n F L = exp - Δ α E L cos 2 π / 2 V G / V π ,
Δ α λ ,   E = α 1 λ | E | + α 2 λ E 2 .
T EO = T / T EA = cos 2 π / 2 V D / V π D .
T EO = 1 + cos π V D / V π D cos   2 θ / 2 .

Metrics