Abstract

A novel, to our knowledge, polymer-type holographic and photoetching recording material—photoetching cellulose film—is reported. Its basic photochemical reaction scheme and the mechanism of image formation are discussed with respect to electron-spin resonance spectra and infrared spectra. Meanwhile, its characteristics, such as a strong real-time effect, high spatial resolution, linear surface-relief modulation capacity, and delayed development effect, are investigated experimentally. Finally, taking advantage of its double-faced photosensitivity, we fabricate integrated micro-optical elements that have both the functions of beam splitting and focusing.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Veldcamp, “Overview of micro-optics: past, present, and future,” in Miniature and Micro-optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 287–299 (1991).
    [CrossRef]
  2. B. J. Chang, C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407–2417 (1979).
    [CrossRef] [PubMed]
  3. B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).
    [CrossRef]
  4. H. M. Smith, Holographic Recording Materials (Springer-Verlag, Berlin, 1977), pp. 218–219.
  5. L. R. Guo, Q. R. Chen, K. P. Wang, “Nongelatin dichromated holographic film,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 91–92 (1991).
  6. K. P. Wang, Q. R. Chen, C. M. Dai, L. R. Guo, “Influence of electron donors on the real-time diffraction efficiency of NGD holograms,” in Holographics International ’92, Y. N. Denisyuk, E. Wyrowski, eds., Proc. SPIE1732, 601–603 (1992).
    [CrossRef]
  7. Q. R. Chen, G. P. Wang, L. R. Guo, C. M. Dai, “Real-time diffraction efficiency and the anti-humidity mecha- nism of NGD holograms,” Sci. China Ser. A 37, 221–226 (1994).
  8. J. Zhu, L. Guo, L. Zhou, G. Wang, “The positive photoresistant characteristics of nongelatin dichromated holographic film,” Opto-Electron. Eng. (China) 21, 61–64 (1994).
  9. J. Zhu, H. Zeng, L. Guo, “Research on imaging mechanism of a novel photoetching holographic recording material: PCF,” in Holography and Optical Information Processing (ICHOIP ’96), G. Mu, G. Jin, G. T. Sincerbox, eds., Proc. SPIE2866, 405–407 (1996).
    [CrossRef]
  10. J. Zhu, L. Guo, J. Tang, H. Zeng, “Imaging mechanism and characteristics of a novel photoetching material: PCF,” Acta Opt. Sinica 16, 1301–1305 (1996).
  11. G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic materials,” Opt. Eng. 32, 671–676 (1993).
    [CrossRef]
  12. J. F. Rabel, Experimental Methods in Polymer Chemistry: Physical Principles and Applications (Wiley, New York, 1980), p. 232.
  13. A. K. Aggarwal, S. K. Kaura, “Real-time hologram interferometric studies in undeveloped dichromated gelatin plates,” Opt. Laser Technol. 21, 331–333 (1989).
    [CrossRef]
  14. A. H. Firester, “Properties and fabrication of a micro Fresnel zone plate,” Appl. Opt. 12, 1698–1702 (1973).
    [CrossRef] [PubMed]
  15. H. Dammann, E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
    [CrossRef]

1996

J. Zhu, L. Guo, J. Tang, H. Zeng, “Imaging mechanism and characteristics of a novel photoetching material: PCF,” Acta Opt. Sinica 16, 1301–1305 (1996).

1994

Q. R. Chen, G. P. Wang, L. R. Guo, C. M. Dai, “Real-time diffraction efficiency and the anti-humidity mecha- nism of NGD holograms,” Sci. China Ser. A 37, 221–226 (1994).

J. Zhu, L. Guo, L. Zhou, G. Wang, “The positive photoresistant characteristics of nongelatin dichromated holographic film,” Opto-Electron. Eng. (China) 21, 61–64 (1994).

1993

G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic materials,” Opt. Eng. 32, 671–676 (1993).
[CrossRef]

1989

A. K. Aggarwal, S. K. Kaura, “Real-time hologram interferometric studies in undeveloped dichromated gelatin plates,” Opt. Laser Technol. 21, 331–333 (1989).
[CrossRef]

1980

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).
[CrossRef]

1979

1977

H. Dammann, E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

1973

Aggarwal, A. K.

A. K. Aggarwal, S. K. Kaura, “Real-time hologram interferometric studies in undeveloped dichromated gelatin plates,” Opt. Laser Technol. 21, 331–333 (1989).
[CrossRef]

Chang, B. J.

Changkakoti, R.

G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic materials,” Opt. Eng. 32, 671–676 (1993).
[CrossRef]

Chen, Q. R.

Q. R. Chen, G. P. Wang, L. R. Guo, C. M. Dai, “Real-time diffraction efficiency and the anti-humidity mecha- nism of NGD holograms,” Sci. China Ser. A 37, 221–226 (1994).

K. P. Wang, Q. R. Chen, C. M. Dai, L. R. Guo, “Influence of electron donors on the real-time diffraction efficiency of NGD holograms,” in Holographics International ’92, Y. N. Denisyuk, E. Wyrowski, eds., Proc. SPIE1732, 601–603 (1992).
[CrossRef]

L. R. Guo, Q. R. Chen, K. P. Wang, “Nongelatin dichromated holographic film,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 91–92 (1991).

Dai, C. M.

Q. R. Chen, G. P. Wang, L. R. Guo, C. M. Dai, “Real-time diffraction efficiency and the anti-humidity mecha- nism of NGD holograms,” Sci. China Ser. A 37, 221–226 (1994).

K. P. Wang, Q. R. Chen, C. M. Dai, L. R. Guo, “Influence of electron donors on the real-time diffraction efficiency of NGD holograms,” in Holographics International ’92, Y. N. Denisyuk, E. Wyrowski, eds., Proc. SPIE1732, 601–603 (1992).
[CrossRef]

Dammann, H.

H. Dammann, E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

Firester, A. H.

Guo, L.

J. Zhu, L. Guo, J. Tang, H. Zeng, “Imaging mechanism and characteristics of a novel photoetching material: PCF,” Acta Opt. Sinica 16, 1301–1305 (1996).

J. Zhu, L. Guo, L. Zhou, G. Wang, “The positive photoresistant characteristics of nongelatin dichromated holographic film,” Opto-Electron. Eng. (China) 21, 61–64 (1994).

J. Zhu, H. Zeng, L. Guo, “Research on imaging mechanism of a novel photoetching holographic recording material: PCF,” in Holography and Optical Information Processing (ICHOIP ’96), G. Mu, G. Jin, G. T. Sincerbox, eds., Proc. SPIE2866, 405–407 (1996).
[CrossRef]

Guo, L. R.

Q. R. Chen, G. P. Wang, L. R. Guo, C. M. Dai, “Real-time diffraction efficiency and the anti-humidity mecha- nism of NGD holograms,” Sci. China Ser. A 37, 221–226 (1994).

K. P. Wang, Q. R. Chen, C. M. Dai, L. R. Guo, “Influence of electron donors on the real-time diffraction efficiency of NGD holograms,” in Holographics International ’92, Y. N. Denisyuk, E. Wyrowski, eds., Proc. SPIE1732, 601–603 (1992).
[CrossRef]

L. R. Guo, Q. R. Chen, K. P. Wang, “Nongelatin dichromated holographic film,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 91–92 (1991).

Kaura, S. K.

A. K. Aggarwal, S. K. Kaura, “Real-time hologram interferometric studies in undeveloped dichromated gelatin plates,” Opt. Laser Technol. 21, 331–333 (1989).
[CrossRef]

Klotz, E.

H. Dammann, E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

Leonard, C. D.

Lessard, R. A.

G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic materials,” Opt. Eng. 32, 671–676 (1993).
[CrossRef]

Manivannan, G.

G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic materials,” Opt. Eng. 32, 671–676 (1993).
[CrossRef]

Rabel, J. F.

J. F. Rabel, Experimental Methods in Polymer Chemistry: Physical Principles and Applications (Wiley, New York, 1980), p. 232.

Smith, H. M.

H. M. Smith, Holographic Recording Materials (Springer-Verlag, Berlin, 1977), pp. 218–219.

Tang, J.

J. Zhu, L. Guo, J. Tang, H. Zeng, “Imaging mechanism and characteristics of a novel photoetching material: PCF,” Acta Opt. Sinica 16, 1301–1305 (1996).

Veldcamp, W. B.

W. B. Veldcamp, “Overview of micro-optics: past, present, and future,” in Miniature and Micro-optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 287–299 (1991).
[CrossRef]

Wang, G.

J. Zhu, L. Guo, L. Zhou, G. Wang, “The positive photoresistant characteristics of nongelatin dichromated holographic film,” Opto-Electron. Eng. (China) 21, 61–64 (1994).

Wang, G. P.

Q. R. Chen, G. P. Wang, L. R. Guo, C. M. Dai, “Real-time diffraction efficiency and the anti-humidity mecha- nism of NGD holograms,” Sci. China Ser. A 37, 221–226 (1994).

Wang, K. P.

L. R. Guo, Q. R. Chen, K. P. Wang, “Nongelatin dichromated holographic film,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 91–92 (1991).

K. P. Wang, Q. R. Chen, C. M. Dai, L. R. Guo, “Influence of electron donors on the real-time diffraction efficiency of NGD holograms,” in Holographics International ’92, Y. N. Denisyuk, E. Wyrowski, eds., Proc. SPIE1732, 601–603 (1992).
[CrossRef]

Zeng, H.

J. Zhu, L. Guo, J. Tang, H. Zeng, “Imaging mechanism and characteristics of a novel photoetching material: PCF,” Acta Opt. Sinica 16, 1301–1305 (1996).

J. Zhu, H. Zeng, L. Guo, “Research on imaging mechanism of a novel photoetching holographic recording material: PCF,” in Holography and Optical Information Processing (ICHOIP ’96), G. Mu, G. Jin, G. T. Sincerbox, eds., Proc. SPIE2866, 405–407 (1996).
[CrossRef]

Zhou, L.

J. Zhu, L. Guo, L. Zhou, G. Wang, “The positive photoresistant characteristics of nongelatin dichromated holographic film,” Opto-Electron. Eng. (China) 21, 61–64 (1994).

Zhu, J.

J. Zhu, L. Guo, J. Tang, H. Zeng, “Imaging mechanism and characteristics of a novel photoetching material: PCF,” Acta Opt. Sinica 16, 1301–1305 (1996).

J. Zhu, L. Guo, L. Zhou, G. Wang, “The positive photoresistant characteristics of nongelatin dichromated holographic film,” Opto-Electron. Eng. (China) 21, 61–64 (1994).

J. Zhu, H. Zeng, L. Guo, “Research on imaging mechanism of a novel photoetching holographic recording material: PCF,” in Holography and Optical Information Processing (ICHOIP ’96), G. Mu, G. Jin, G. T. Sincerbox, eds., Proc. SPIE2866, 405–407 (1996).
[CrossRef]

Acta Opt. Sinica

J. Zhu, L. Guo, J. Tang, H. Zeng, “Imaging mechanism and characteristics of a novel photoetching material: PCF,” Acta Opt. Sinica 16, 1301–1305 (1996).

Appl. Opt.

Opt. Acta

H. Dammann, E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

Opt. Eng.

G. Manivannan, R. Changkakoti, R. A. Lessard, “Cr(vi)- and Fe(iii)-doped polymer systems as real-time holographic materials,” Opt. Eng. 32, 671–676 (1993).
[CrossRef]

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).
[CrossRef]

Opt. Laser Technol.

A. K. Aggarwal, S. K. Kaura, “Real-time hologram interferometric studies in undeveloped dichromated gelatin plates,” Opt. Laser Technol. 21, 331–333 (1989).
[CrossRef]

Opto-Electron. Eng. (China)

J. Zhu, L. Guo, L. Zhou, G. Wang, “The positive photoresistant characteristics of nongelatin dichromated holographic film,” Opto-Electron. Eng. (China) 21, 61–64 (1994).

Sci. China Ser. A

Q. R. Chen, G. P. Wang, L. R. Guo, C. M. Dai, “Real-time diffraction efficiency and the anti-humidity mecha- nism of NGD holograms,” Sci. China Ser. A 37, 221–226 (1994).

Other

W. B. Veldcamp, “Overview of micro-optics: past, present, and future,” in Miniature and Micro-optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 287–299 (1991).
[CrossRef]

J. Zhu, H. Zeng, L. Guo, “Research on imaging mechanism of a novel photoetching holographic recording material: PCF,” in Holography and Optical Information Processing (ICHOIP ’96), G. Mu, G. Jin, G. T. Sincerbox, eds., Proc. SPIE2866, 405–407 (1996).
[CrossRef]

H. M. Smith, Holographic Recording Materials (Springer-Verlag, Berlin, 1977), pp. 218–219.

L. R. Guo, Q. R. Chen, K. P. Wang, “Nongelatin dichromated holographic film,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 91–92 (1991).

K. P. Wang, Q. R. Chen, C. M. Dai, L. R. Guo, “Influence of electron donors on the real-time diffraction efficiency of NGD holograms,” in Holographics International ’92, Y. N. Denisyuk, E. Wyrowski, eds., Proc. SPIE1732, 601–603 (1992).
[CrossRef]

J. F. Rabel, Experimental Methods in Polymer Chemistry: Physical Principles and Applications (Wiley, New York, 1980), p. 232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

ESR spectra of the PCF: Curve (1), when exposed to the mercury lamp for 15 min. Curve (2), when laid aside for three days in darkness.

Fig. 2
Fig. 2

IR spectra of the PCF under various conditions. See text for details.

Fig. 3
Fig. 3

Structure of the long-chain molecules in the cellulose polymer.

Fig. 4
Fig. 4

Real-time diffraction efficiency versus the exposure of the PCF gratings.

Fig. 5
Fig. 5

Real-time diffraction efficiency versus the spatial frequencies of the PCF gratings.

Fig. 6
Fig. 6

Surface-relief interferogram of a developed PCF grating.

Fig. 7
Fig. 7

Surface-relief depth versus the exposure time of developed PCF gratings.

Fig. 8
Fig. 8

Enlarged structure of a Fresnel zone plate as a photographic reduction mask.

Fig. 9
Fig. 9

Enlarged structure of a Dammann grating as a photographic reduction mask.

Fig. 10
Fig. 10

Optical layout for contact copying of an integrated element: M, mirror; BS, beam splitter; L, collimating lens; SF, spatial filter.

Fig. 11
Fig. 11

Performance of a double-faced micro-optical element: (a) Photograph of a 3 × 3 spot array. (b) Intensity contribution of the 3 × 3 spot array.

Tables (1)

Tables Icon

Table 1 Diffraction Efficiencies (DE) of PCF Gratings under Various Processing Conditions and Exposure Timesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Cr VI   h ν   Cr VI * ,
Cr VI * + e     Cr V ,
Cr V + 2 e     Cr III .

Metrics