Abstract

A theoretical and experimental comparison of photon-counting cameras and CCD’s for use in astronomical speckle imaging was performed. Photon-counting cameras able to detect single-photon events typically exhibit a lower quantum efficiency (QE) and suffer saturation effects at high light levels. In contrast, CCD’s offer a high QE and virtually unlimited photon-count rate. However CCD’s are limited at lower light levels by noise associated with the readout process. Speckle-imaging performance was quantified by derivation of the signal-to-noise ratio (SNR) of the power spectrum and the Knox–Thompson product to include CCD readout noise. Ground-based telescope observations at various light levels were obtained with an advanced, high-speed, low-noise CCD camera to verify SNR expressions. The useful operating ranges for these two camera types were compared by consideration of the effects of QE, readout noise, and maximum photon-count rate. Although photon-counting cameras continued to dominate low-light-level applications, CCD’s are shown to offer significant improvements over photon-counting cameras for a wide range of light levels. Future reductions of readout noise will further improve CCD speckle-imaging performance.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Labeyrie, “Attainment of diffraction-limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).
  2. K. T. Knox, B. J. Thompson, “Recovery of images from atmospherically degraded short exposure images,” Astrophys. J. 193, L45–L48 (1974).
    [CrossRef]
  3. K. T. Knox, “Image retrieval from astronomical speckle patterns,” J. Opt. Soc. Am. 66, 1236–1239 (1976).
    [CrossRef]
  4. G. Weigelt, “Modified astronomical speckle interferometry, speckle masking,” Opt. Commun. 21, 55–59 (1977).
    [CrossRef]
  5. A. W. Lohmann, G. P. Weigelt, B. Wirnitzer, “Speckle masking in astronomy: triple correlation theory and application,” Appl. Opt. 22, 4028–4037 (1983).
    [CrossRef] [PubMed]
  6. G. Weigelt, B. Wirnitzer, “Image reconstruction by the speckle masking method,” Opt. Lett. 8, 389–391 (1983).
    [CrossRef] [PubMed]
  7. J. W. Beletic, R. M. Goody, “Recovery of planetary images by speckle imaging,” Appl. Opt. 32, 6909–6921 (1992).
    [CrossRef]
  8. A. Oppenheim, J. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
    [CrossRef]
  9. J. C. Dainty, M. J. Northcott, “Imaging a randomly translating object at low levels using the triple correlation,” Opt. Commun. 58, 11–14 (1986).
    [CrossRef]
  10. G. R. Ayers, M. J. Northcott, J. C. Dainty, “Knox–Thompson and triple correlation imaging through atmospheric turbulence,” J. Opt. Soc. Am. A 5, 963–985 (1988).
    [CrossRef]
  11. J. W. Beletic, “Comparison of Knox–Thompson and bispectrum algorithms for reconstructing phase of complex extended objects,” in Proceedings of the First European Southern Observatory–National Optical Astronomy Observatories (ESO–NOAO) Conference on High Resolution Imaging by Interferometry, F. Merkle, ed. (European Southern Observatory, Garching, Germany, 1988), Part 2, No. 29, pp. 357–372.
  12. J. W. Goodman, J. F. Belsher, “Fundamental limitations in linear invariant restoration of atmospherically degraded images,” in Imaging Through the Atmosphere, J. C. Wyant, ed., Proc. SPIE75, 141–154 (1976).
    [CrossRef]
  13. M. G. Miller, “Noise considerations in stellar speckle interferometry,” J. Opt. Soc. Am. 67, 1176–1184 (1977).
    [CrossRef]
  14. J. A. Zadnik, “The use of charge coupled devices in astronomical speckle imaging,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Ga., December1993).
  15. P. Nisenson, C. Papaliolios, “Effects of photon noise on speckle image reconstruction with the Knox–Thompson algorithm,” Opt. Commun. 47, 91–96 (1983).
    [CrossRef]
  16. F. Roddier, “Interferometric imaging in optical astrometry,” in Phys. Rep. 170, 97–166 (1988).
    [CrossRef]
  17. J. C. Dainty, “Stellar speckle interferometry,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), Chap. 7.
  18. M. Clampin, F. Paresce, “Photon-counting imaging with a GaAs photocathode: evaluation of the Red-RANICON for astronomical imaging,” Astron. Astrophys. 225, 578–584 (1989).
  19. C. Papaliolios, P. Nisenson, S. Ebstein, “Speckle imaging with the PAPA detector,” Appl. Opt. 24, 287–292 (1985).
    [CrossRef] [PubMed]
  20. J. G. Timothy, “Electronic readout systems for microchannel plates,” IEEE Trans. Nuclear Sci. NS-32, 427–432 (1985).
    [CrossRef]
  21. J. Janesick, T. Elliot, “History and advancement of large array scientific CCD imagers,” in Astronomical CCD Observing and Reduction Techniques, S. B. Howell, ed., Vol. 23 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992), pp. 1–66.
  22. B. E. Burke, R. W. Mountain, P. J. Daniels, D. C. Harris, “420 × 420 charge-coupled-device imager and four-chip hybrid focal plane,” Opt. Eng. 26, 890–896 (1987).
    [CrossRef]
  23. B. E. Burke, R. W. Mountain, D. C. Harris, M. W. Bautz, J. P. Doty, G. R. Ricker, P. J. Daniels, “An abuttable CCD imager for visible and x-ray focal plane arrays,” IEEE Trans. Electron Dev. 38, 1069–1076 (1991).
    [CrossRef]
  24. J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
    [CrossRef]
  25. J. Janesick, T. Elliot, R. Bredthauer, J. Cover, R. Schaefer, R. Varian, “Recent developments in large area scientific CCD image sensors,” in Optical Sensors and Electronic Photography, M. M. Blouke, D. Pophal, eds., Proc. SPIE1071, 115–133 (1989).
    [CrossRef]
  26. F. Espenak, Ten Year Planetary Ephemeris: 1986–1995, NASA ref. publ. 1176 (NASA, Planetary Systems Branch, 1986).
  27. P. Jacquinot, B. Rozien-Dossier, “Apodization,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1964), Vol. 3, Chap. 2, pp. 31–184.

1992 (1)

J. W. Beletic, R. M. Goody, “Recovery of planetary images by speckle imaging,” Appl. Opt. 32, 6909–6921 (1992).
[CrossRef]

1991 (1)

B. E. Burke, R. W. Mountain, D. C. Harris, M. W. Bautz, J. P. Doty, G. R. Ricker, P. J. Daniels, “An abuttable CCD imager for visible and x-ray focal plane arrays,” IEEE Trans. Electron Dev. 38, 1069–1076 (1991).
[CrossRef]

1990 (1)

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

1989 (1)

M. Clampin, F. Paresce, “Photon-counting imaging with a GaAs photocathode: evaluation of the Red-RANICON for astronomical imaging,” Astron. Astrophys. 225, 578–584 (1989).

1988 (2)

1987 (1)

B. E. Burke, R. W. Mountain, P. J. Daniels, D. C. Harris, “420 × 420 charge-coupled-device imager and four-chip hybrid focal plane,” Opt. Eng. 26, 890–896 (1987).
[CrossRef]

1986 (1)

J. C. Dainty, M. J. Northcott, “Imaging a randomly translating object at low levels using the triple correlation,” Opt. Commun. 58, 11–14 (1986).
[CrossRef]

1985 (2)

J. G. Timothy, “Electronic readout systems for microchannel plates,” IEEE Trans. Nuclear Sci. NS-32, 427–432 (1985).
[CrossRef]

C. Papaliolios, P. Nisenson, S. Ebstein, “Speckle imaging with the PAPA detector,” Appl. Opt. 24, 287–292 (1985).
[CrossRef] [PubMed]

1983 (3)

1981 (1)

A. Oppenheim, J. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

1977 (2)

G. Weigelt, “Modified astronomical speckle interferometry, speckle masking,” Opt. Commun. 21, 55–59 (1977).
[CrossRef]

M. G. Miller, “Noise considerations in stellar speckle interferometry,” J. Opt. Soc. Am. 67, 1176–1184 (1977).
[CrossRef]

1976 (1)

1974 (1)

K. T. Knox, B. J. Thompson, “Recovery of images from atmospherically degraded short exposure images,” Astrophys. J. 193, L45–L48 (1974).
[CrossRef]

1970 (1)

A. Labeyrie, “Attainment of diffraction-limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

Ayers, G. R.

Bautz, M. W.

B. E. Burke, R. W. Mountain, D. C. Harris, M. W. Bautz, J. P. Doty, G. R. Ricker, P. J. Daniels, “An abuttable CCD imager for visible and x-ray focal plane arrays,” IEEE Trans. Electron Dev. 38, 1069–1076 (1991).
[CrossRef]

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

Beletic, J. W.

J. W. Beletic, R. M. Goody, “Recovery of planetary images by speckle imaging,” Appl. Opt. 32, 6909–6921 (1992).
[CrossRef]

J. W. Beletic, “Comparison of Knox–Thompson and bispectrum algorithms for reconstructing phase of complex extended objects,” in Proceedings of the First European Southern Observatory–National Optical Astronomy Observatories (ESO–NOAO) Conference on High Resolution Imaging by Interferometry, F. Merkle, ed. (European Southern Observatory, Garching, Germany, 1988), Part 2, No. 29, pp. 357–372.

Belsher, J. F.

J. W. Goodman, J. F. Belsher, “Fundamental limitations in linear invariant restoration of atmospherically degraded images,” in Imaging Through the Atmosphere, J. C. Wyant, ed., Proc. SPIE75, 141–154 (1976).
[CrossRef]

Bredthauer, R.

J. Janesick, T. Elliot, R. Bredthauer, J. Cover, R. Schaefer, R. Varian, “Recent developments in large area scientific CCD image sensors,” in Optical Sensors and Electronic Photography, M. M. Blouke, D. Pophal, eds., Proc. SPIE1071, 115–133 (1989).
[CrossRef]

Burke, B. E.

B. E. Burke, R. W. Mountain, D. C. Harris, M. W. Bautz, J. P. Doty, G. R. Ricker, P. J. Daniels, “An abuttable CCD imager for visible and x-ray focal plane arrays,” IEEE Trans. Electron Dev. 38, 1069–1076 (1991).
[CrossRef]

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

B. E. Burke, R. W. Mountain, P. J. Daniels, D. C. Harris, “420 × 420 charge-coupled-device imager and four-chip hybrid focal plane,” Opt. Eng. 26, 890–896 (1987).
[CrossRef]

Clampin, M.

M. Clampin, F. Paresce, “Photon-counting imaging with a GaAs photocathode: evaluation of the Red-RANICON for astronomical imaging,” Astron. Astrophys. 225, 578–584 (1989).

Cover, J.

J. Janesick, T. Elliot, R. Bredthauer, J. Cover, R. Schaefer, R. Varian, “Recent developments in large area scientific CCD image sensors,” in Optical Sensors and Electronic Photography, M. M. Blouke, D. Pophal, eds., Proc. SPIE1071, 115–133 (1989).
[CrossRef]

Dainty, J. C.

G. R. Ayers, M. J. Northcott, J. C. Dainty, “Knox–Thompson and triple correlation imaging through atmospheric turbulence,” J. Opt. Soc. Am. A 5, 963–985 (1988).
[CrossRef]

J. C. Dainty, M. J. Northcott, “Imaging a randomly translating object at low levels using the triple correlation,” Opt. Commun. 58, 11–14 (1986).
[CrossRef]

J. C. Dainty, “Stellar speckle interferometry,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), Chap. 7.

Daniels, P. J.

B. E. Burke, R. W. Mountain, D. C. Harris, M. W. Bautz, J. P. Doty, G. R. Ricker, P. J. Daniels, “An abuttable CCD imager for visible and x-ray focal plane arrays,” IEEE Trans. Electron Dev. 38, 1069–1076 (1991).
[CrossRef]

B. E. Burke, R. W. Mountain, P. J. Daniels, D. C. Harris, “420 × 420 charge-coupled-device imager and four-chip hybrid focal plane,” Opt. Eng. 26, 890–896 (1987).
[CrossRef]

Dolat, V. S.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

Doty, J. P.

B. E. Burke, R. W. Mountain, D. C. Harris, M. W. Bautz, J. P. Doty, G. R. Ricker, P. J. Daniels, “An abuttable CCD imager for visible and x-ray focal plane arrays,” IEEE Trans. Electron Dev. 38, 1069–1076 (1991).
[CrossRef]

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

Ebstein, S.

Elliot, T.

J. Janesick, T. Elliot, “History and advancement of large array scientific CCD imagers,” in Astronomical CCD Observing and Reduction Techniques, S. B. Howell, ed., Vol. 23 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992), pp. 1–66.

J. Janesick, T. Elliot, R. Bredthauer, J. Cover, R. Schaefer, R. Varian, “Recent developments in large area scientific CCD image sensors,” in Optical Sensors and Electronic Photography, M. M. Blouke, D. Pophal, eds., Proc. SPIE1071, 115–133 (1989).
[CrossRef]

Espenak, F.

F. Espenak, Ten Year Planetary Ephemeris: 1986–1995, NASA ref. publ. 1176 (NASA, Planetary Systems Branch, 1986).

Goodman, J. W.

J. W. Goodman, J. F. Belsher, “Fundamental limitations in linear invariant restoration of atmospherically degraded images,” in Imaging Through the Atmosphere, J. C. Wyant, ed., Proc. SPIE75, 141–154 (1976).
[CrossRef]

Goody, R. M.

J. W. Beletic, R. M. Goody, “Recovery of planetary images by speckle imaging,” Appl. Opt. 32, 6909–6921 (1992).
[CrossRef]

Harris, D. C.

B. E. Burke, R. W. Mountain, D. C. Harris, M. W. Bautz, J. P. Doty, G. R. Ricker, P. J. Daniels, “An abuttable CCD imager for visible and x-ray focal plane arrays,” IEEE Trans. Electron Dev. 38, 1069–1076 (1991).
[CrossRef]

B. E. Burke, R. W. Mountain, P. J. Daniels, D. C. Harris, “420 × 420 charge-coupled-device imager and four-chip hybrid focal plane,” Opt. Eng. 26, 890–896 (1987).
[CrossRef]

Huang, C. M.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

Jacquinot, P.

P. Jacquinot, B. Rozien-Dossier, “Apodization,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1964), Vol. 3, Chap. 2, pp. 31–184.

Janesick, J.

J. Janesick, T. Elliot, “History and advancement of large array scientific CCD imagers,” in Astronomical CCD Observing and Reduction Techniques, S. B. Howell, ed., Vol. 23 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992), pp. 1–66.

J. Janesick, T. Elliot, R. Bredthauer, J. Cover, R. Schaefer, R. Varian, “Recent developments in large area scientific CCD image sensors,” in Optical Sensors and Electronic Photography, M. M. Blouke, D. Pophal, eds., Proc. SPIE1071, 115–133 (1989).
[CrossRef]

Knox, K. T.

K. T. Knox, “Image retrieval from astronomical speckle patterns,” J. Opt. Soc. Am. 66, 1236–1239 (1976).
[CrossRef]

K. T. Knox, B. J. Thompson, “Recovery of images from atmospherically degraded short exposure images,” Astrophys. J. 193, L45–L48 (1974).
[CrossRef]

Labeyrie, A.

A. Labeyrie, “Attainment of diffraction-limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

Lim, J.

A. Oppenheim, J. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

Lohmann, A. W.

McGonagle, W. H.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

Miller, M. G.

Mountain, R. W.

B. E. Burke, R. W. Mountain, D. C. Harris, M. W. Bautz, J. P. Doty, G. R. Ricker, P. J. Daniels, “An abuttable CCD imager for visible and x-ray focal plane arrays,” IEEE Trans. Electron Dev. 38, 1069–1076 (1991).
[CrossRef]

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

B. E. Burke, R. W. Mountain, P. J. Daniels, D. C. Harris, “420 × 420 charge-coupled-device imager and four-chip hybrid focal plane,” Opt. Eng. 26, 890–896 (1987).
[CrossRef]

Nisenson, P.

C. Papaliolios, P. Nisenson, S. Ebstein, “Speckle imaging with the PAPA detector,” Appl. Opt. 24, 287–292 (1985).
[CrossRef] [PubMed]

P. Nisenson, C. Papaliolios, “Effects of photon noise on speckle image reconstruction with the Knox–Thompson algorithm,” Opt. Commun. 47, 91–96 (1983).
[CrossRef]

Northcott, M. J.

G. R. Ayers, M. J. Northcott, J. C. Dainty, “Knox–Thompson and triple correlation imaging through atmospheric turbulence,” J. Opt. Soc. Am. A 5, 963–985 (1988).
[CrossRef]

J. C. Dainty, M. J. Northcott, “Imaging a randomly translating object at low levels using the triple correlation,” Opt. Commun. 58, 11–14 (1986).
[CrossRef]

Oppenheim, A.

A. Oppenheim, J. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

Papaliolios, C.

C. Papaliolios, P. Nisenson, S. Ebstein, “Speckle imaging with the PAPA detector,” Appl. Opt. 24, 287–292 (1985).
[CrossRef] [PubMed]

P. Nisenson, C. Papaliolios, “Effects of photon noise on speckle image reconstruction with the Knox–Thompson algorithm,” Opt. Commun. 47, 91–96 (1983).
[CrossRef]

Paresce, F.

M. Clampin, F. Paresce, “Photon-counting imaging with a GaAs photocathode: evaluation of the Red-RANICON for astronomical imaging,” Astron. Astrophys. 225, 578–584 (1989).

Reich, R. K.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

Ricker, G. R.

B. E. Burke, R. W. Mountain, D. C. Harris, M. W. Bautz, J. P. Doty, G. R. Ricker, P. J. Daniels, “An abuttable CCD imager for visible and x-ray focal plane arrays,” IEEE Trans. Electron Dev. 38, 1069–1076 (1991).
[CrossRef]

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

Roddier, F.

F. Roddier, “Interferometric imaging in optical astrometry,” in Phys. Rep. 170, 97–166 (1988).
[CrossRef]

Rozien-Dossier, B.

P. Jacquinot, B. Rozien-Dossier, “Apodization,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1964), Vol. 3, Chap. 2, pp. 31–184.

Schaefer, R.

J. Janesick, T. Elliot, R. Bredthauer, J. Cover, R. Schaefer, R. Varian, “Recent developments in large area scientific CCD image sensors,” in Optical Sensors and Electronic Photography, M. M. Blouke, D. Pophal, eds., Proc. SPIE1071, 115–133 (1989).
[CrossRef]

Thompson, B. J.

K. T. Knox, B. J. Thompson, “Recovery of images from atmospherically degraded short exposure images,” Astrophys. J. 193, L45–L48 (1974).
[CrossRef]

Timothy, J. G.

J. G. Timothy, “Electronic readout systems for microchannel plates,” IEEE Trans. Nuclear Sci. NS-32, 427–432 (1985).
[CrossRef]

Twichell, J. C.

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

Varian, R.

J. Janesick, T. Elliot, R. Bredthauer, J. Cover, R. Schaefer, R. Varian, “Recent developments in large area scientific CCD image sensors,” in Optical Sensors and Electronic Photography, M. M. Blouke, D. Pophal, eds., Proc. SPIE1071, 115–133 (1989).
[CrossRef]

Weigelt, G.

G. Weigelt, B. Wirnitzer, “Image reconstruction by the speckle masking method,” Opt. Lett. 8, 389–391 (1983).
[CrossRef] [PubMed]

G. Weigelt, “Modified astronomical speckle interferometry, speckle masking,” Opt. Commun. 21, 55–59 (1977).
[CrossRef]

Weigelt, G. P.

Wirnitzer, B.

Zadnik, J. A.

J. A. Zadnik, “The use of charge coupled devices in astronomical speckle imaging,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Ga., December1993).

Appl. Opt. (3)

Astron. Astrophys. (2)

A. Labeyrie, “Attainment of diffraction-limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

M. Clampin, F. Paresce, “Photon-counting imaging with a GaAs photocathode: evaluation of the Red-RANICON for astronomical imaging,” Astron. Astrophys. 225, 578–584 (1989).

Astrophys. J. (1)

K. T. Knox, B. J. Thompson, “Recovery of images from atmospherically degraded short exposure images,” Astrophys. J. 193, L45–L48 (1974).
[CrossRef]

IEEE Trans. Electron Dev. (1)

B. E. Burke, R. W. Mountain, D. C. Harris, M. W. Bautz, J. P. Doty, G. R. Ricker, P. J. Daniels, “An abuttable CCD imager for visible and x-ray focal plane arrays,” IEEE Trans. Electron Dev. 38, 1069–1076 (1991).
[CrossRef]

IEEE Trans. Nuclear Sci. (1)

J. G. Timothy, “Electronic readout systems for microchannel plates,” IEEE Trans. Nuclear Sci. NS-32, 427–432 (1985).
[CrossRef]

in Phys. Rep. (1)

F. Roddier, “Interferometric imaging in optical astrometry,” in Phys. Rep. 170, 97–166 (1988).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Opt. Commun. (3)

P. Nisenson, C. Papaliolios, “Effects of photon noise on speckle image reconstruction with the Knox–Thompson algorithm,” Opt. Commun. 47, 91–96 (1983).
[CrossRef]

J. C. Dainty, M. J. Northcott, “Imaging a randomly translating object at low levels using the triple correlation,” Opt. Commun. 58, 11–14 (1986).
[CrossRef]

G. Weigelt, “Modified astronomical speckle interferometry, speckle masking,” Opt. Commun. 21, 55–59 (1977).
[CrossRef]

Opt. Eng. (1)

B. E. Burke, R. W. Mountain, P. J. Daniels, D. C. Harris, “420 × 420 charge-coupled-device imager and four-chip hybrid focal plane,” Opt. Eng. 26, 890–896 (1987).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

A. Oppenheim, J. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

Rev. Sci. Instrum. (1)

J. C. Twichell, B. E. Burke, R. K. Reich, W. H. McGonagle, C. M. Huang, M. W. Bautz, J. P. Doty, G. R. Ricker, R. W. Mountain, V. S. Dolat, “Advanced CCD imager technology for use from 1 to 10,000 Å,” Rev. Sci. Instrum. 61, 2744–2746 (1990).
[CrossRef]

Other (8)

J. Janesick, T. Elliot, R. Bredthauer, J. Cover, R. Schaefer, R. Varian, “Recent developments in large area scientific CCD image sensors,” in Optical Sensors and Electronic Photography, M. M. Blouke, D. Pophal, eds., Proc. SPIE1071, 115–133 (1989).
[CrossRef]

F. Espenak, Ten Year Planetary Ephemeris: 1986–1995, NASA ref. publ. 1176 (NASA, Planetary Systems Branch, 1986).

P. Jacquinot, B. Rozien-Dossier, “Apodization,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1964), Vol. 3, Chap. 2, pp. 31–184.

J. A. Zadnik, “The use of charge coupled devices in astronomical speckle imaging,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Ga., December1993).

J. C. Dainty, “Stellar speckle interferometry,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), Chap. 7.

J. W. Beletic, “Comparison of Knox–Thompson and bispectrum algorithms for reconstructing phase of complex extended objects,” in Proceedings of the First European Southern Observatory–National Optical Astronomy Observatories (ESO–NOAO) Conference on High Resolution Imaging by Interferometry, F. Merkle, ed. (European Southern Observatory, Garching, Germany, 1988), Part 2, No. 29, pp. 357–372.

J. W. Goodman, J. F. Belsher, “Fundamental limitations in linear invariant restoration of atmospherically degraded images,” in Imaging Through the Atmosphere, J. C. Wyant, ed., Proc. SPIE75, 141–154 (1976).
[CrossRef]

J. Janesick, T. Elliot, “History and advancement of large array scientific CCD imagers,” in Astronomical CCD Observing and Reduction Techniques, S. B. Howell, ed., Vol. 23 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1992), pp. 1–66.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Mean and standard deviation of the noise in the power spectrum as a function of the light level.

Fig. 2
Fig. 2

Reconstructed Mars images with a decreasing light level. The images show that SNRPS N ¯ for photon-noise-dominated data and SNRPS N ¯ 2 for readout-noise-dominated data. (a) Photon-noise limited with N ¯ = 3.5 × 108. (b) Photon-noise limited with N ¯ = 3.5 × 107. (c) Readout-noise limited with N ¯ = 7.0 × 106. (d) Readout-noise limited with N ¯ = 7.3 × 105. The loss in resolution between the images of (c) and (d) is visibly worse than the loss between the images of (a) and (b) for the same drop in light level.

Fig. 3
Fig. 3

Comparison of (a) the highest light level reconstruction with (b) a long-exposure image. The 6800-km Mars disk subtends 13.0 arcsec with a N ¯ = 1.0 × 109 average number of photons per frame. Features of approximately 0.3 arcsec can be seen, corresponding to 156 km on the Martian surface.

Fig. 4
Fig. 4

Single-frame power-spectrum SNR as a function of the visual magnitude for a point source with the observational conditions listed in Table 2. RN, readout noise.

Fig. 5
Fig. 5

Single-frame power-spectrum SNR plotted as a function of the visual magnitude for imaging (a) an extended object such as an asteroid or man-made satellite where |Ô|2 = 10-3 and (b) a complicated source such as Mars with |Ô|2 = 10-6. RN, readout noise.

Fig. 6
Fig. 6

Limiting visual magnitudes of the CCD and photon-counting camera (PCC) plotted versus the object complexity ||2|Ô|2 for the observational conditions given in Table 2. The solid lines represent current technology; the dashed lines indicate future systems. At high visual magnitudes (dimmer objects) the current CCD is limited by readout noise, whereas the PCC offers better imaging performance. The unshaded region represents objects that are too dim and too complex to detect with current technology.

Tables (2)

Tables Icon

Table 1 Average Number of Detected Photons Compared with the Readout Noise for 12 Separate Observations of Mars

Tables Icon

Table 2 Observational Assumptions Used for the Comparison of CCD’s to Photon-Counting Cameras with Respect to Speckle-Imaging Performance

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

| I ˆ u | 2 = | T ˆ u | 2 | O ˆ u | 2 ,
| O ˆ u | 2 estimate | T ˆ u | 2 | O ˆ u | 2 | I ˆ ref u | 2 .
KT u ,   Δ u     I u I * u + Δ u ,
BS u ,   Δ u = I u I * u + Δ u I Δ u
SNR PS u = N 2 | I ˆ u | 2 N 2 | I ˆ u | 2 + N + N pix σ CCD 2 2 + 4 N 2 | I ˆ u | 2 + N 2 | I ˆ 2 u | 2 + N 1 / 2 .
SNR PS u = M N ¯ 2 | T ˆ u | 2 | O ˆ u | 2 N ¯ + N pix σ CCD 2 + N ¯ 2 | T ˆ u | 2 | O ˆ u | 2 ,
SNR PS u = N ¯ 2 | I ˆ u | 2 N ¯ + N pix σ CCD 2 + N ¯ 2 | I ˆ u | 2 .
SNR KT u ,   Δ u = N ¯ 2 | I ˆ u I ˆ * u + Δ u | N ¯ + N pix σ CCD 2 + N ¯ 2 | I ˆ u | 2 N ¯ + N pix σ CCD 2 + N ¯ 2 | I ˆ u + Δ u | 2 1 / 2 .
I u I * u + Δ u | I u | 2 exp i ϕ u - ϕ u + Δ u .
u = 0.074 + 0.302 1 - u 2 u c + 0.233 1 - u 2 u c 2 + 0.390 1 - u 2 u c 3 ,
N - 1 / 2 M - 1 / 4 1 + n - 1 σ CCD 2 1 / 2 ,
I x = - 1 u O ˆ u | T ˆ u | + N - 1 / 2 M - 1 / 4 1 + n - 1 σ CCD 2 1 / 2 A   exp i Φ | T ˆ u | ,

Metrics