Abstract

We present wavelength-multiplexed holographic recording for high-density, high-speed data storage using reflection geometry with a high-sensitivity cerium-doped strontium barium niobate single-crystal structure and second-harmonic generated light from a compact and convenient wavelength-tunable laser diode. We have recorded and reconstructed wavelength-multiplexed holograms by using wavelengths 0.053-nm apart. The theoretical wavelength selectivity of the hologram with the linewidth of the light source taken into consideration agrees well with the experimental wavelength selectivity.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
    [CrossRef]
  2. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
    [CrossRef]
  3. A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
    [CrossRef] [PubMed]
  4. G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
    [CrossRef] [PubMed]
  5. I. McMichael, W. Christran, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
    [CrossRef] [PubMed]
  6. S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
    [CrossRef]
  7. D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage system,” Opt. Lett. 21, 1780–1782 (1996).
    [CrossRef] [PubMed]
  8. T. Kume, K. Nonaka, M. Yamamoto, “High-density optical storage with multiplexed holographic recording method,” IEICE Trans. Electron. E78-C, 1601–1606 (1995).
  9. T. Kume, K. Nonaka, M. Yamamoto, “Wavelength-multiplexed holographic recording in cerium doped strontium barium niobate by using tunable laser diode,” Jpn. J. Appl. Phys. 35, 448–453 (1996).
    [CrossRef]
  10. G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef] [PubMed]
  11. K. Curtis, C. Gu, D. Psaltis, “Cross talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
    [CrossRef] [PubMed]
  12. H. Zhou, F. Zhao, F. T. S. Yu, “Effects of recording–erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram,” Appl. Opt. 33, 4339–4344 (1994).
    [CrossRef] [PubMed]
  13. S. Yagi, T. Imai, H. Yamazaki, “Measurement of carrier density in Ce doped SBN single crystals and its annealing effect,” in Proceedings of Japan–U.S. Workshop on Functional Fronts in Advanced Ceramics (Boundaries and Defects), Tsukuba, Japan, December 1994 (Science and Technology Agency of Japan, Tokyo, 1994), pp. 126–129.
  14. T. Imai, S. Yagi, H. Yamazaki, M. Ono, “Heat treatment with quenching of photorefractive Sr0.61Ba0.39Nb2O6:Ce single crystals,” in Proceedings of PR ’97, Chiba, Japan, June 1997 (Optical Society of Japan, Tokyo, 1997), pp. 78–81.
  15. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  16. E. C. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
    [CrossRef]
  17. M. Segev, D. Engin, A. Yariv, G. C. Valley, “Temporal evolution of fanning in photorefractive materials,” Opt. Lett. 18, 956–958 (1993).
    [CrossRef] [PubMed]
  18. P. P. Banerjee, R. M. Misra, “Dependence of photorefractive beam fanning on beam parameters,” Opt. Commun. 100, 166–172 (1993).
    [CrossRef]

1996

1995

T. Kume, K. Nonaka, M. Yamamoto, “High-density optical storage with multiplexed holographic recording method,” IEICE Trans. Electron. E78-C, 1601–1606 (1995).

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

1994

1993

K. Curtis, C. Gu, D. Psaltis, “Cross talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
[CrossRef] [PubMed]

M. Segev, D. Engin, A. Yariv, G. C. Valley, “Temporal evolution of fanning in photorefractive materials,” Opt. Lett. 18, 956–958 (1993).
[CrossRef] [PubMed]

P. P. Banerjee, R. M. Misra, “Dependence of photorefractive beam fanning on beam parameters,” Opt. Commun. 100, 166–172 (1993).
[CrossRef]

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
[CrossRef]

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

1992

1991

E. C. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Banerjee, P. P.

P. P. Banerjee, R. M. Misra, “Dependence of photorefractive beam fanning on beam parameters,” Opt. Commun. 100, 166–172 (1993).
[CrossRef]

Barbastathis, G.

Bashaw, M. C.

D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage system,” Opt. Lett. 21, 1780–1782 (1996).
[CrossRef] [PubMed]

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
[CrossRef]

Chang, T. Y.

Christran, W.

Curtis, K.

Engin, D.

Gu, C.

Heanue, J. F.

Hesselink, L.

D. Lande, J. F. Heanue, M. C. Bashaw, L. Hesselink, “Digital wavelength-multiplexed holographic data storage system,” Opt. Lett. 21, 1780–1782 (1996).
[CrossRef] [PubMed]

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
[CrossRef]

Hong, J. H.

Imai, T.

S. Yagi, T. Imai, H. Yamazaki, “Measurement of carrier density in Ce doped SBN single crystals and its annealing effect,” in Proceedings of Japan–U.S. Workshop on Functional Fronts in Advanced Ceramics (Boundaries and Defects), Tsukuba, Japan, December 1994 (Science and Technology Agency of Japan, Tokyo, 1994), pp. 126–129.

T. Imai, S. Yagi, H. Yamazaki, M. Ono, “Heat treatment with quenching of photorefractive Sr0.61Ba0.39Nb2O6:Ce single crystals,” in Proceedings of PR ’97, Chiba, Japan, June 1997 (Optical Society of Japan, Tokyo, 1997), pp. 78–81.

Johnson, K. M.

E. C. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kume, T.

T. Kume, K. Nonaka, M. Yamamoto, “Wavelength-multiplexed holographic recording in cerium doped strontium barium niobate by using tunable laser diode,” Jpn. J. Appl. Phys. 35, 448–453 (1996).
[CrossRef]

T. Kume, K. Nonaka, M. Yamamoto, “High-density optical storage with multiplexed holographic recording method,” IEICE Trans. Electron. E78-C, 1601–1606 (1995).

Lande, D.

Levene, M.

Leyva, V.

Maniloff, E. C.

E. C. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

McMichael, I.

Misra, R. M.

P. P. Banerjee, R. M. Misra, “Dependence of photorefractive beam fanning on beam parameters,” Opt. Commun. 100, 166–172 (1993).
[CrossRef]

Mok, F.

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Nonaka, K.

T. Kume, K. Nonaka, M. Yamamoto, “Wavelength-multiplexed holographic recording in cerium doped strontium barium niobate by using tunable laser diode,” Jpn. J. Appl. Phys. 35, 448–453 (1996).
[CrossRef]

T. Kume, K. Nonaka, M. Yamamoto, “High-density optical storage with multiplexed holographic recording method,” IEICE Trans. Electron. E78-C, 1601–1606 (1995).

Ono, M.

T. Imai, S. Yagi, H. Yamazaki, M. Ono, “Heat treatment with quenching of photorefractive Sr0.61Ba0.39Nb2O6:Ce single crystals,” in Proceedings of PR ’97, Chiba, Japan, June 1997 (Optical Society of Japan, Tokyo, 1997), pp. 78–81.

Pletcher, D.

Psaltis, D.

Pu, A.

Rakuljic, G. A.

Segev, M.

Valley, G. C.

Wen, M.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Yagi, S.

S. Yagi, T. Imai, H. Yamazaki, “Measurement of carrier density in Ce doped SBN single crystals and its annealing effect,” in Proceedings of Japan–U.S. Workshop on Functional Fronts in Advanced Ceramics (Boundaries and Defects), Tsukuba, Japan, December 1994 (Science and Technology Agency of Japan, Tokyo, 1994), pp. 126–129.

T. Imai, S. Yagi, H. Yamazaki, M. Ono, “Heat treatment with quenching of photorefractive Sr0.61Ba0.39Nb2O6:Ce single crystals,” in Proceedings of PR ’97, Chiba, Japan, June 1997 (Optical Society of Japan, Tokyo, 1997), pp. 78–81.

Yamamoto, M.

T. Kume, K. Nonaka, M. Yamamoto, “Wavelength-multiplexed holographic recording in cerium doped strontium barium niobate by using tunable laser diode,” Jpn. J. Appl. Phys. 35, 448–453 (1996).
[CrossRef]

T. Kume, K. Nonaka, M. Yamamoto, “High-density optical storage with multiplexed holographic recording method,” IEICE Trans. Electron. E78-C, 1601–1606 (1995).

Yamazaki, H.

T. Imai, S. Yagi, H. Yamazaki, M. Ono, “Heat treatment with quenching of photorefractive Sr0.61Ba0.39Nb2O6:Ce single crystals,” in Proceedings of PR ’97, Chiba, Japan, June 1997 (Optical Society of Japan, Tokyo, 1997), pp. 78–81.

S. Yagi, T. Imai, H. Yamazaki, “Measurement of carrier density in Ce doped SBN single crystals and its annealing effect,” in Proceedings of Japan–U.S. Workshop on Functional Fronts in Advanced Ceramics (Boundaries and Defects), Tsukuba, Japan, December 1994 (Science and Technology Agency of Japan, Tokyo, 1994), pp. 126–129.

Yang, Z.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Yariv, A.

Yin, S.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Yu, F. T. S.

H. Zhou, F. Zhao, F. T. S. Yu, “Effects of recording–erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram,” Appl. Opt. 33, 4339–4344 (1994).
[CrossRef] [PubMed]

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Zhao, F.

H. Zhou, F. Zhao, F. T. S. Yu, “Effects of recording–erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram,” Appl. Opt. 33, 4339–4344 (1994).
[CrossRef] [PubMed]

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Zhou, H.

H. Zhou, F. Zhao, F. T. S. Yu, “Effects of recording–erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram,” Appl. Opt. 33, 4339–4344 (1994).
[CrossRef] [PubMed]

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

IEICE Trans. Electron.

T. Kume, K. Nonaka, M. Yamamoto, “High-density optical storage with multiplexed holographic recording method,” IEICE Trans. Electron. E78-C, 1601–1606 (1995).

J. Appl. Phys.

E. C. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

Jpn. J. Appl. Phys.

T. Kume, K. Nonaka, M. Yamamoto, “Wavelength-multiplexed holographic recording in cerium doped strontium barium niobate by using tunable laser diode,” Jpn. J. Appl. Phys. 35, 448–453 (1996).
[CrossRef]

Opt. Commun.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

P. P. Banerjee, R. M. Misra, “Dependence of photorefractive beam fanning on beam parameters,” Opt. Commun. 100, 166–172 (1993).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
[CrossRef]

Sci. Am.

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Other

S. Yagi, T. Imai, H. Yamazaki, “Measurement of carrier density in Ce doped SBN single crystals and its annealing effect,” in Proceedings of Japan–U.S. Workshop on Functional Fronts in Advanced Ceramics (Boundaries and Defects), Tsukuba, Japan, December 1994 (Science and Technology Agency of Japan, Tokyo, 1994), pp. 126–129.

T. Imai, S. Yagi, H. Yamazaki, M. Ono, “Heat treatment with quenching of photorefractive Sr0.61Ba0.39Nb2O6:Ce single crystals,” in Proceedings of PR ’97, Chiba, Japan, June 1997 (Optical Society of Japan, Tokyo, 1997), pp. 78–81.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

(a) Input and (b) reconstructed image of a mask pattern. The exposure energy was approximately 38 mJ, and the diffraction efficiency was approximately 0.01%.

Fig. 3
Fig. 3

Cross talk in reconstructed images. The wavelength difference between recording and reconstruction Δλ was (a) 0 nm, (b) 0.018 nm, (c) 0.036 nm, and (d) 0.053 nm.

Fig. 4
Fig. 4

Wavelength selectivity of the hologram.

Fig. 5
Fig. 5

Wavelength distributions (beam spectra) of LD-SHG light. This is a Gaussian distribution with a FWHM of 0.03 nm.

Fig. 6
Fig. 6

Wavelength selectivity of the hologram. The dotted curve expresses the theoretical result without consideration of the linewidth of the light source, while the solid curve expresses the result with the linewidth considered.

Fig. 7
Fig. 7

Reconstructed images from two wavelength-multiplexed holograms. The wavelength difference was 0.053 nm, and the diffraction efficiency was approximately (1 × 10-4)%.

Fig. 8
Fig. 8

Plots of the LD-SHG and YAG–SHG wavelength distributions (beam spectra).

Fig. 9
Fig. 9

Plots of the LD-SHG and YAG–SHG wavelength stabilities.

Fig. 10
Fig. 10

Plots of the LD-SHG and YAG–SHG diffraction efficiencies of the hologram.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D x = exp - x 2 m 2 .
W d Δ λ = Δ λ - w Δ λ + w   W n x D x - Δ λ d x ,
W d n Δ λ = W d Δ λ W d 0 .

Metrics