Abstract

We study the joint optimization of time and space resources within free-space optical interconnect (FSOI) systems. Both analytical and simulation results are presented to support this optimization study for two different models of FSOI cross-talk noise: diffraction from a rectangular aperture and Gaussian propagation. Under realistic power and signal-to-noise ratio constraints, optimum designs based on the Gaussian propagation model achieve a capacity of 2.91 × 1015 bits s-1 m-2, while the rectangular model offers a smaller capacity of 1.91 × 1013 bits s-1 m-2. We also study the use of error-correction codes (ECC) within FSOI systems. We present optimal Reed–Solomon codes of various length, and their use is shown to facilitate an increase in both spatial density and data rate, resulting in FSOI capacity gains in excess of 8.2 for the rectangular model and 3.7 for the Gaussian case. A tolerancing study of FSOI systems shows that ECC can provide tolerance to implementational error sources. We find that optimally coded FSOI systems can fail when system errors become large, and we present a compromise solution that results in a balanced design in time, space, and error-correction resources.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Cathy, B. J. Smith, “High concurrency data bus using arrays of optical emitters and detectors,” Appl. Opt. 18, 1687–1691 (1979).
    [CrossRef]
  2. J. Jahns, “Concepts for digital computing—a survey,” Optik 57, 429–449 (1980).
  3. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
    [CrossRef]
  4. D. Z. Tsang, “One-gigabit per second free-space optical interconnection,” Appl. Opt. 29, 2034–2037 (1990).
    [CrossRef] [PubMed]
  5. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
    [CrossRef] [PubMed]
  6. T. Sakano, T. Matsumoto, K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system: cosine-iii,” Appl. Opt. 34, 1815–1822 (1995).
    [CrossRef] [PubMed]
  7. R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.
  8. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
    [CrossRef] [PubMed]
  9. D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
    [CrossRef]
  10. R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
    [CrossRef]
  11. C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995).
    [CrossRef]
  12. M. Feldman, C. Guest, T. Drabik, S. Esner, “Comparison between electrical and free-space optical interconnects for fine grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989).
    [CrossRef] [PubMed]
  13. R. K. Kostuk, J.-H. Yeh, M. Fink, “Distributed optical data bus for board-level interconnects,” Appl. Opt. 32, 5010–5021 (1993).
    [CrossRef] [PubMed]
  14. A. K. Ghosh, “Alignability of optical interconnects,” Appl. Opt. 29, 5253–5261 (1987).
    [CrossRef]
  15. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992).
    [CrossRef]
  16. M. A. Neifeld, M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994).
    [CrossRef] [PubMed]
  17. M. A. Neifeld, W.-C. Chou, “Information theoretic limits to the capacity of volume holographic optical memory,” Appl. Opt. 36, 514–517 (1997).
    [CrossRef] [PubMed]
  18. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), Chap. 11.
  19. T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
    [CrossRef]
  20. S. Lin, D. J. Costello, Error Control Coding(Prentice-Hall, Englewood Cliffs, N.J., 1983), Chap. 6.
  21. W. W. Peterson, E. J. Weldon, Error-Correcting Codes (MIT Press, Cambridge, Mass., 1972).
  22. M. A. Neifeld, J. D. Hayes, “Error-correction schemes for volume optical memories,” Appl. Opt. 34, 8183–8191 (1995).
    [CrossRef] [PubMed]
  23. M. A. Neifeld, S. Sridharan, “Parallel error correction using spectral Reed–Solomon codes,” J. Opt. Commun. 17, 525–531 (1997).

1997

M. A. Neifeld, W.-C. Chou, “Information theoretic limits to the capacity of volume holographic optical memory,” Appl. Opt. 36, 514–517 (1997).
[CrossRef] [PubMed]

M. A. Neifeld, S. Sridharan, “Parallel error correction using spectral Reed–Solomon codes,” J. Opt. Commun. 17, 525–531 (1997).

1996

1995

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

T. Sakano, T. Matsumoto, K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system: cosine-iii,” Appl. Opt. 34, 1815–1822 (1995).
[CrossRef] [PubMed]

M. A. Neifeld, J. D. Hayes, “Error-correction schemes for volume optical memories,” Appl. Opt. 34, 8183–8191 (1995).
[CrossRef] [PubMed]

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995).
[CrossRef]

1994

1993

1992

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

1990

1989

1987

1984

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

1980

J. Jahns, “Concepts for digital computing—a survey,” Optik 57, 429–449 (1980).

1979

Araki, S.

Athale, R.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Ayliffe, M. H.

Bacon, D.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Blum, O.

R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.

Boisset, G. C.

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Carson, R. F.

R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.

Cathy, W. T.

Chirousky, L. M. F.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Chou, W.-C.

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Costello, D. J.

S. Lin, D. J. Costello, Error Control Coding(Prentice-Hall, Englewood Cliffs, N.J., 1983), Chap. 6.

Craft, D. C.

R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.

Cunningham, J. E.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Dahringer, D.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Drabik, T.

Esner, S.

Esner, S. C.

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995).
[CrossRef]

Fan, C.

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995).
[CrossRef]

Feldblum, A. Y.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Feldman, M.

Fink, M.

Ghosh, A. K.

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Goossen, K. W.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Guest, C.

Hansen, M. W.

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995).
[CrossRef]

Hayes, J. D.

Hinton, H. S.

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Hsiao, W.

Hui, S. P.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Jahns, J.

J. Jahns, “Concepts for digital computing—a survey,” Optik 57, 429–449 (1980).

Jan, W. Y.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Kabal, D.

Kajita, M.

Kasahara, K.

Kilcoyne, S. P.

R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.

Kim, N. H.

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Kossives, D.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Kostuk, R. K.

Krishnamoorthy, A. U.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Kubota, K.

Kung, S.-Y.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Kurihara, K.

Lear, K. L.

R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.

Leibenguth, R. E.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Levi, A. F. J.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Lin, S.

S. Lin, D. J. Costello, Error Control Coding(Prentice-Hall, Englewood Cliffs, N.J., 1983), Chap. 6.

Liu, Y. S.

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Logan, R. A.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Lovejoy, M. L.

R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.

Mansoorian, B.

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995).
[CrossRef]

Marsden, G. C.

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995).
[CrossRef]

Matsumoto, T.

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

McDonald, M.

Mesereau, K. O.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Neifeld, M. A.

Noguchi, K.

Nordin, R. A.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Nottenburg, R. N.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

O’Gorman, J.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Otazo, M. R.

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Ozguz, V. H.

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995).
[CrossRef]

Patrizi, G. A.

R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.

Pavlasek, D.

Peterson, W. W.

W. W. Peterson, E. J. Weldon, Error-Correcting Codes (MIT Press, Cambridge, Mass., 1972).

Plant, D. V.

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Redmond, I.

Robertson, B.

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Robertson, W. M.

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Rolston, D. R.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Sakano, T.

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Schenfeld, E.

Seigal, P. K.

R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.

Shang, A. Z.

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Simmons, J.

Smith, B. J.

Song, K.

Sridharan, S.

M. A. Neifeld, S. Sridharan, “Parallel error correction using spectral Reed–Solomon codes,” J. Opt. Commun. 17, 525–531 (1997).

Suzaki, T.

Tanbun-Ek, T.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

Thompson, D. A.

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Tsang, D. Z.

Tseug, B.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Van Blerkom, D. A.

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995).
[CrossRef]

Walker, J. A.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Warren, M. E.

R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.

Weldon, E. J.

W. W. Peterson, E. J. Weldon, Error-Correcting Codes (MIT Press, Cambridge, Mass., 1972).

Woodward, T. K.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), Chap. 11.

Yeh, J.-H.

Appl. Opt.

D. Z. Tsang, “One-gigabit per second free-space optical interconnection,” Appl. Opt. 29, 2034–2037 (1990).
[CrossRef] [PubMed]

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

T. Sakano, T. Matsumoto, K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system: cosine-iii,” Appl. Opt. 34, 1815–1822 (1995).
[CrossRef] [PubMed]

W. T. Cathy, B. J. Smith, “High concurrency data bus using arrays of optical emitters and detectors,” Appl. Opt. 18, 1687–1691 (1979).
[CrossRef]

S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
[CrossRef] [PubMed]

C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995).
[CrossRef]

M. Feldman, C. Guest, T. Drabik, S. Esner, “Comparison between electrical and free-space optical interconnects for fine grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989).
[CrossRef] [PubMed]

R. K. Kostuk, J.-H. Yeh, M. Fink, “Distributed optical data bus for board-level interconnects,” Appl. Opt. 32, 5010–5021 (1993).
[CrossRef] [PubMed]

A. K. Ghosh, “Alignability of optical interconnects,” Appl. Opt. 29, 5253–5261 (1987).
[CrossRef]

M. A. Neifeld, W.-C. Chou, “Information theoretic limits to the capacity of volume holographic optical memory,” Appl. Opt. 36, 514–517 (1997).
[CrossRef] [PubMed]

M. A. Neifeld, J. D. Hayes, “Error-correction schemes for volume optical memories,” Appl. Opt. 34, 8183–8191 (1995).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
[CrossRef]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

J. Lightwave Technol.

R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
[CrossRef]

J. Opt. Commun.

M. A. Neifeld, S. Sridharan, “Parallel error correction using spectral Reed–Solomon codes,” J. Opt. Commun. 17, 525–531 (1997).

J. Opt. Quantum Electron.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Opt. Lett.

Optik

J. Jahns, “Concepts for digital computing—a survey,” Optik 57, 429–449 (1980).

Proc. IEEE

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Other

R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.

S. Lin, D. J. Costello, Error Control Coding(Prentice-Hall, Englewood Cliffs, N.J., 1983), Chap. 6.

W. W. Peterson, E. J. Weldon, Error-Correcting Codes (MIT Press, Cambridge, Mass., 1972).

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

FSOI schematic: (a) Transmitter- and receiver-plane geometries. (b) Depiction of optical cross-talk calculation.

Fig. 2
Fig. 2

Capacity versus channel spacing, with L = 10 cm, NEP = 0.3 nW/ Hz , λ = 0.5 μm, and P = 50 μW: (a) for three values of the SNR and (b) for three values of the interconnect length. The peaks correspond to optimal designs, and the specifications of these optima are indicated. D, optimal spacing; R, optimal data rate; C, optimal capacity.

Fig. 3
Fig. 3

Optimal FSOI designs for NEP = 0.3 nW/ Hz , λ = 0.5 μm, and P = 50 μW: (a) Optimal channel spacing (right-hand axis) and the corresponding optimal FSOI capacities (left-hand axis) versus the interconnect length with a value of SNR = 10. (b) Optimal channel spacing (right-hand axis) and optimal data rate (left-hand axis) versus the minimum required SNR with a value of L = 10 cm. (c) Optimal capacity versus the minimum required SNR with a value of L = 10 cm.

Fig. 4
Fig. 4

Coding gain versus code rate for three different RS ECC lengths: BER = 10-12.

Fig. 5
Fig. 5

Capacity gain ΔC versus the code rate for three different RS code lengths, with L = 10 cm, SNR = 10, NEP = 0.3 nW/ Hz , λ = 0.5 μm, and P = 50 μW.

Fig. 6
Fig. 6

Optimum FSOI designs with coding for SNRuncoded = 10, NEP = 0.3 nW/ Hz , λ = 0.5 μm, and P = 50 μW: (a) Optimum channel spacing versus interconnect length for coded and uncoded designs. (b) Optimum FSOI capacity versus interconnect length for coded and uncoded designs.

Fig. 7
Fig. 7

Capacity C versus channel spacing determined by use of the Gaussian propagation model (a) for three values of the SNR, and (b) for three values of the interconnect length.

Fig. 8
Fig. 8

Optimal FSOI designs for the Gaussian propagation model with NEP = 0.3 nW/ Hz , λ = 0.5 μm, and P = 50 μW: (a) Optimal channel spacing (right-hand axis) and the corresponding optimal FSOI capacity (left-hand axis) versus the interconnect length for a value of SNR = 10. (b) Optimal channel spacing (right-hand axis) and optimal data rate (left-hand axis) versus the SNR for a value of L = 10 cm. (c) Optimal capacity versus the required SNR for a value of L = 10 cm.

Fig. 9
Fig. 9

Capacity gain ΔC versus code rate for L = 10 cm, SNR = 10, NEP = 0.3 nW/ Hz , λ = 0.5 μm, and P = 50 μW under the Gaussian propagation model for three different RS code lengths.

Fig. 10
Fig. 10

Optimum FSOI capacity versus the interconnect length for coded and uncoded designs with SNRuncoded = 10, NEP = 0.3 nW/ Hz , λ = 0.5 μm, and P = 50 μW under the Gaussian propagation model.

Fig. 11
Fig. 11

Tolerance results for techniques 1, 2, and 3, for a design value of L = 10 cm and with D = 0.27 mm, R = 212 MHz, and C = 2.91 × 1015: (a) FSOI capacity versus the lateral-shift error, with a nominal design of 0 μm. (b) FSOI capacity versus the interconnect length error, with a nominal design of 10 cm. (c) FSOI capacity versus the source-power error, with a 50-μW nominal design. The legend is described in the text.

Fig. 12
Fig. 12

Tolerance results for techniques 4 and 5: (a) FSOI capacity versus the lateral-shift error. (b) FSOI capacity versus the interconnect-length error. (c) FSOI capacity versus the source-power error. The legend is described in the text.

Tables (2)

Tables Icon

Table 1 Code-Rate Optimization Resultsa

Tables Icon

Table 2 Tolerance Ranges (80%) for Techniques 1–5a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

SNR = P 0 η Δ P 0 1 - η Δ + NEP R ,
Δ opt η Δ Δ | Δ opt - η Δ opt = γ ,
C opt P 0 2 NEP 2 1 27 L λ 1 SNR 2 1 + SNR .
r ˆ opt 2 b + SNR raw - b 2 + 5 b SNR raw + 4 SNR raw 2 1 / 2 3 m .
η Δ = 2 W 2 0 2 π 0 Δ / 2 exp - 2 π / W 2 r 2 r d r d θ ,
η Δ = π 2 1 + 16 λ 2 L 2 / π 2 Δ 4 - 1 ,
Δ opt λ L SNR - 1.28 1 / 4 3.98 1 + 0.57 SNR 1 / 4 ,
C opt 0.454 λ L P 0 2 NEP 2 SNR 2 .

Metrics