Abstract

We study the joint optimization of time and space resources within free-space optical interconnect (FSOI) systems. Both analytical and simulation results are presented to support this optimization study for two different models of FSOI cross-talk noise: diffraction from a rectangular aperture and Gaussian propagation. Under realistic power and signal-to-noise ratio constraints, optimum designs based on the Gaussian propagation model achieve a capacity of 2.91 × 1015 bits s-1 m-2, while the rectangular model offers a smaller capacity of 1.91 × 1013 bits s-1 m-2. We also study the use of error-correction codes (ECC) within FSOI systems. We present optimal Reed–Solomon codes of various length, and their use is shown to facilitate an increase in both spatial density and data rate, resulting in FSOI capacity gains in excess of 8.2 for the rectangular model and 3.7 for the Gaussian case. A tolerancing study of FSOI systems shows that ECC can provide tolerance to implementational error sources. We find that optimally coded FSOI systems can fail when system errors become large, and we present a compromise solution that results in a balanced design in time, space, and error-correction resources.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription